Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Microbiol Res ; 285: 127768, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38820702

RESUMEN

In the understanding of the molecular interaction between plants and their microbiome, a key point is to identify simplified models of the microbiome including relevant bacterial and fungal partners which could also be effective in plant growth promotion. Here, as proof-of-concept, we aim to identify the possible molecular interactions between symbiotic nitrogen-fixing rhizobia and soil fungi (Trichoderma spp.), hence shed light on synergistic roles rhizospheric fungi could have in the biology of symbiotic nitrogen fixation bacteria. We selected 4 strains of the model rhizobium Sinorhizobium meliloti and 4 Trichoderma species (T. velutinum, T. tomentosum, T. gamsii and T. harzianum). In an experimental scheme of 4 ×4 strains x species combinations, we investigated the rhizobia physiological and transcriptomic responses elicited by fungal spent media, as well as spent media effects on rhizobia-host legume plant (alfalfa, Medicago sativa L.) symbiosis. Fungal spent media had large effects on rhizobia, specific for each fungal species and rhizobial strains combination, indicating a generalized rhizobia genotype x fungal genotype interaction, including synergistic, neutral and antagonistic effects on alfalfa symbiotic phenotypes. Differential expression of a high number of genes was shown in rhizobia strains with up to 25% of total genes differentially expressed upon treatment of cultures with fungal spent media. Percentages over total genes and type of genes differentially expressed changed according to both fungal species and rhizobial strain. To support the hypothesis of a relevant rhizobia genotype x fungal genotype interaction, a nested Likelihood Ratio Test indicated that the model considering the fungus-rhizobium interaction explained 23.4% of differentially expressed genes. Our results provide insights into molecular interactions involving nitrogen-fixing rhizobia and rhizospheric fungi, highlighting the panoply of genes and genotypic interactions (fungus, rhizobium, host plant) which may concur to plant symbiosis.


Asunto(s)
Genotipo , Medicago sativa , Fijación del Nitrógeno , Sinorhizobium meliloti , Simbiosis , Trichoderma , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/fisiología , Medicago sativa/microbiología , Fijación del Nitrógeno/genética , Trichoderma/genética , Trichoderma/fisiología , Trichoderma/clasificación , Rizosfera , Microbiología del Suelo , Interacciones Microbianas , Transcriptoma
2.
Front Plant Sci ; 14: 1288408, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38143572

RESUMEN

Gray mold, caused by Botrytis cinerea is a major cause of post-harvest rot of fresh fruits and vegetables. The utilization of selected microorganisms as biocontrol agents is a promising alternative to effectively control gray mold on tomatoes. The current study was conducted to explore potential biocontrol mechanisms of the Pseudomonas strain to control infections on post-harvest tomatoes. Among the 8 tested bacterial isolates, Pseudomonas protegens ML15 demonstrated antagonistic activity to Botrytis cinerea. Moreover, P. protegens ML15 exhibited the production of siderophores, hydrogen cyanide, ammonia, exopolysaccharides, lipase, biosurfactant, 2,4-diacetylphloroglucinol, and several other antifungal compounds, such as 1-tetradecanol, cyclododecane, 2,4-di-tert-butylphenol, and 2-methyl-1-hexadecanol. A comprehensive genomic analysis of P. protegens ML15 unravels 18 distinct genetic regions with the potential for biosynthesizing secondary metabolites, known for their pivotal role in biocontrol responses against plant pathogens. In vivo, experiments showed that both culture suspension and cell-free supernatant of P. protegens ML15 significantly reduced fungal growth (53.0 ± 0.63%) and mitigated disease development (52.8 ± 1.5%) in cherry tomatoes at four days post-B. cinerea inoculation. During the infection, the application of P. protegens ML15 resulted in the augmentation of total antioxidant, phenolic content, and ascorbic acids content. Thus, our results suggested that P. protegens ML15's role as a biocontrol agent against B. cinerea-induced postharvest tomato decay achieved through the secretion of antifungal substances, induction of tomato defense responses, and inhibition of mycelial growth of B. cinerea. These findings provide a significant contribution to the ongoing search for alternative, eco-friendly methods of controlling gray mold in fresh products. The utilization of P. protegens ML15 as a biocontrol agent could help to reduce the reliance on chemical fungicides and promote sustainable agriculture practices.

3.
Front Microbiol ; 14: 1142966, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36925481

RESUMEN

Several seed priming methods can be used to improve seed germination, seedling vigor, and to overcome abiotic stress. In addition to these benefits, only the biopriming method provides the additional benefit of biotic stress management, earning it special attention. Seed biopriming is useful in almost all crops around the world and is an environmentally friendly alternative to chemical fungicides. Biopriming usually refers to use of beneficial microorganisms, in particular plant growth-promoting bacteria (PGPB) able to survive under various harsh environmental conditions. In this study, various bacterial strains were isolated from samples of different origins, i.e., rhizospheric soil, desert sand, and sea mud. Preliminary screening of 156 bacterial isolates was conducted on the basis of their potassium (K), phosphorus (P) solubilization ability, and production of plant growth hormone, i.e., indole acetic acid (IAA). The most efficient bacteria were identified by 16S rRNA gene nucleotide sequences and further examined for their ACC deaminase activity, ammonia production, and biocontrol activity (defined via chitinolytic activity, HCN, and siderophores production). Finally, carrot seed germination assay was conducted with 10 shortlisted most potent isolates. 68.6, 58.3, and 66.7% of tested bacterial isolates were capable of P, K, and Zn solubilization, respectively. Klebsiella aerogenes AF3II1 showed the highest P and K solubilization, while isolate AF4II5, AF7II3, and PC3 showed the highest IAA synthesis ability. Serratia plymuthica EDC15 and Pseudomonas putida AF1I1 showed the strongest chitinolytic and siderophore production activity, respectively. Seven isolates demonstrated strong HCN production ability. Five isolates improved carrot seed germination. Only selected isolates with plant growth-promoting properties can improve carrot germination. The results of this study demonstrate that mainly auxins are involved in seed germination. Furthermore, the data suggest that phosphate solubilization ability may play an additional role in seed germination.

4.
Front Plant Sci ; 13: 999866, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36340355

RESUMEN

Land that has little to no utility for agriculture or industry is considered marginal land. This kind of terrain is frequently found on the edge of deserts or other arid regions. The amount of land that can be used for agriculture continues to be constrained by increasing desertification, which is being caused by climate change and the deterioration of agriculturally marginal areas. Plants and associated microorganisms are used to remediate and enhance the soil quality of marginal land. They represent a low-cost and usually long-term solution for restoring soil fertility. Among various phytoremediation processes (viz., phytodegradation, phytoextraction, phytostabilization, phytovolatilization, phytofiltration, phytostimulation, and phytodesalination), the employment of a specific mechanism is determined by the state of the soil, the presence and concentration of contaminants, and the plant species involved. This review focuses on the key economically important plants used for phytoremediation, as well as the challenges to plant growth and phytoremediation capability with emphasis on the advantages and limits of plant growth in marginal land soil. Plant growth-promoting bacteria (PGPB) boost plant development and promote soil bioremediation by secreting a variety of metabolites and hormones, through nitrogen fixation, and by increasing other nutrients' bioavailability through mineral solubilization. This review also emphasizes the role of PGPB under different abiotic stresses, including heavy-metal-contaminated land, high salinity environments, and organic contaminants. In our opinion, the improved soil fertility of marginal lands using PGPB with economically significant plants (e.g., Miscanthus) in dual precession technology will result in the reclamation of general agriculture as well as the restoration of native vegetation.

5.
Environ Sci Pollut Res Int ; 28(1): 880-889, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32827116

RESUMEN

The aquaponic system is an alternative strategy to treat aquaculture waste and achieve food independence. Bacteria play vital roles in the aquaponic system as they can transform ammonia or ammonium into nitrite and then into nitrate, which is more favorable for bacteria, fish, and plants. The objective of this study was to determine the effect of nitrifying bacteria (Nitrosomonas europaea Winogradsky and Nitrobacter winogradskyi Winslow) on the aquaponic system in terms of water quality, nutrient availability, and productivity of carp (Cyprinus carpio), lettuce (Lactuca sativa var. crispa), and vetiver grass (Chrysopogon zizanioides L.). The experiment consisted of four treatments: aquaculture of carp as a control for fish (A), hydroponic of lettuce and vetiver grass without nutrient addition as a control for plants (B), aquaponic (carp, lettuce, vetiver grass) (C), and aquaponic with nitrifying bacteria addition (D). The results showed nitrifying bacteria addition had a significant effect on daily growth rate (DGR) and relative growth rate (RGR) of lettuce within a treatment; on the other hand, the nitrifying bacteria did not give a significant effect to RGR of vetiver grass. The growth rate, specific growth rate, and survival rate of the carp in aquaculture treatment (A) were lower than in both aquaponic treatments (C and D). Nitrifying bacteria addition in the aquaponics system had a significant effect of increasing the orthophosphate concentration. Water quality was also indicated to be better in the aquaponic system than in the aquaculture system. The integration of aquaculture and hydroponics with the addition of nitrifying bacteria enables the formation of microorganism communities, nitrate, and orthophosphate, which lead to the improvement of water quality, nutrient availability, and plant growth.


Asunto(s)
Carpas , Chrysopogon , Animales , Bacterias , Lactuca , Nitrobacter
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA