Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
medRxiv ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38712112

RESUMEN

Background: Variability in treatment response may be attributable to organ-level heterogeneity in tumor lesions. Radiomic analysis of medical images can elucidate non-invasive biomarkers of clinical outcome. Organ-specific radiomic comparison across immunotherapies and targeted therapies has not been previously reported. Methods: We queried UPMC Hillman Cancer Center registry for patients with metastatic melanoma (MEL) treated with immune checkpoint inhibitors (ICI) (anti-PD1/CTLA4 [ipilimumab+nivolumab; I+N] or anti-PD1 monotherapy) or BRAF targeted therapy. Best overall response was measured using RECIST v1.1. Lesions were segmented into discrete volume-of-interest with 400 radiomics features extracted. Overall and organ-specific machine-learning models were constructed to predict disease control (DC) versus progressive disease (PD) using XGBoost. Results: 291 MEL patients were identified, including 242 ICI (91 I+N, 151 PD1) and 49 BRAF. 667 metastases were analyzed, including 541 ICI (236 I+N, 305 PD1) and 126 BRAF. Across cohorts, baseline demographics included 39-47% female, 24-29% M1C, 24-46% M1D, and 61-80% with elevated LDH. Among patients experiencing DC, the organs with the greatest reduction were liver (-88%±12%, I+N; mean±S.E.M.) and lung (-72%±8%, I+N). For patients with multiple same-organ target lesions, the highest inter-lesion heterogeneity was observed in brain among patients who received ICI while no intra-organ heterogeneity was observed in BRAF. 267 patients were kept for radiomic modeling, including 221 ICI (86 I+N, 135 PD1) and 46 BRAF. Models consisting of optimized radiomic signatures classified DC/PD across I+N (AUC=0.85) and PD1 (0.71) and within individual organ sites (AUC=0.72∼0.94). Integration of clinical variables improved the models' performance. Comparison of models between treatments and across organ sites suggested mostly non-overlapping DC or PD features. Skewness, kurtosis, and informational measure of correlation (IMC) were among the radiomic features shared between overall response models. Kurtosis and IMC were also utilized by multiple organ-site models. Conclusions: Differential organ-specific response was observed across BRAF and ICI with within organ heterogeneity observed for ICI but not for BRAF. Radiomic features of organ-specific response demonstrated little overlap. Integrating clinical factors with radiomics improves the prediction of disease course outcome and prediction of tumor heterogeneity.

2.
J Vasc Interv Radiol ; 35(7): 1049-1056, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38513756

RESUMEN

PURPOSE: To evaluate the growth and quality of an interventional radiology (IR) training model designed for resource-constrained settings and implemented in Tanzania as well as its overall potential to increase access to minimally invasive procedures across the region. MATERIALS AND METHODS: IR training in Tanzania began in October 2018 through monthly deployment of visiting teaching teams for hands-on training combined with in-person and remote lectures. A competency-based 2-year Master of Science in IR curriculum was inaugurated at the nation's main teaching hospital in October 2019, with the first 2 classes graduating in 2021 and 2022. Procedural data, demographics, and clinical outcomes were collected and analyzed throughout the duration of this program. RESULTS: From October 2018 to July 2022, 1,595 procedures were performed in Tanzania: 1,236 nonvascular and 359 vascular, all with local fellows as primary interventional radiologists. Of these, 97.2% were technically successful, 95.2% were without adverse events, and 28.9% were performed independently by Tanzanian fellows and faculty with no difference in adverse event and technical success rates (P = .63 and P = .90, respectively), irrespective of procedural class. Ten IR physicians graduated from this program during the study period, followed by another 3 per year going forward. Partner training programs in Uganda and Rwanda mirroring this model commenced in 2023 and 2024, respectively. CONCLUSIONS: The reported training model offers a practical and effective solution to meet many of the challenges associated with the lack of access to IR in sub-Saharan Africa.


Asunto(s)
Curriculum , Educación de Postgrado en Medicina , Radiografía Intervencional , Radiología Intervencionista , Humanos , Radiología Intervencionista/educación , Tanzanía , Femenino , Masculino , Competencia Clínica , Evaluación de Programas y Proyectos de Salud , Factores de Tiempo , Persona de Mediana Edad , Adulto , Radiólogos/educación , Países en Desarrollo , Desarrollo de Programa
3.
J Exp Clin Cancer Res ; 43(1): 81, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38486328

RESUMEN

BACKGROUND: Immune-checkpoint inhibitors (ICIs) have showed unprecedent efficacy in the treatment of patients with advanced non-small cell lung cancer (NSCLC). However, not all patients manifest clinical benefit due to the lack of reliable predictive biomarkers. We showed preliminary data on the predictive role of the combination of radiomics and plasma extracellular vesicle (EV) PD-L1 to predict durable response to ICIs. MAIN BODY: Here, we validated this model in a prospective cohort of patients receiving ICIs plus chemotherapy and compared it with patients undergoing chemotherapy alone. This multiparametric model showed high sensitivity and specificity at identifying non-responders to ICIs and outperformed tissue PD-L1, being directly correlated with tumor change. SHORT CONCLUSION: These findings indicate that the combination of radiomics and EV PD-L1 dynamics is a minimally invasive and promising biomarker for the stratification of patients to receive ICIs.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Vesículas Extracelulares , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/tratamiento farmacológico , Antígeno B7-H1/uso terapéutico , Radiómica , Multiómica , Estudios Prospectivos , Biomarcadores de Tumor , Inmunoterapia , Vesículas Extracelulares/patología
4.
World Neurosurg ; 184: e137-e143, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38253177

RESUMEN

BACKGROUND: Preoperative symptom severity in cervical spondylotic myelopathy (CSM) can be variable. Radiomic signatures could provide an imaging biomarker for symptom severity in CSM. This study utilizes radiomic signatures of T1-weighted and T2-weighted magnetic resonance imaging images to correlate with preoperative symptom severity based on modified Japanese Orthopaedic Association (mJOA) scores for patients with CSM. METHODS: Sixty-two patients with CSM were identified. Preoperative T1-weighted and T2-weighted magnetic resonance imaging images for each patient were segmented from C2-C7. A total of 205 texture features were extracted from each volume of interest. After feature normalization, each second-order feature was further subdivided to yield a total of 400 features from each volume of interest for analysis. Supervised machine learning was used to build radiomic models. RESULTS: The patient cohort had a median mJOA preoperative score of 13; of which, 30 patients had a score of >13 (low severity) and 32 patients had a score of ≤13 (high severity). Radiomic analysis of T2-weighted imaging resulted in 4 radiomic signatures that correlated with preoperative mJOA with a sensitivity, specificity, and accuracy of 78%, 89%, and 83%, respectively (P < 0.004). The area under the curve value for the ROC curves were 0.69, 0.70, and 0.77 for models generated by independent T1 texture features, T1 and T2 texture features in combination, and independent T2 texture features, respectively. CONCLUSIONS: Radiomic models correlate with preoperative mJOA scores using T2 texture features in patients with CSM. This may serve as a surrogate, objective imaging biomarker to measure the preoperative functional status of patients.


Asunto(s)
Enfermedades de la Médula Espinal , Espondilosis , Humanos , Resultado del Tratamiento , Radiómica , Enfermedades de la Médula Espinal/diagnóstico por imagen , Enfermedades de la Médula Espinal/cirugía , Enfermedades de la Médula Espinal/patología , Imagen por Resonancia Magnética/métodos , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/cirugía , Vértebras Cervicales/patología , Espondilosis/diagnóstico por imagen , Espondilosis/cirugía , Espondilosis/complicaciones , Biomarcadores
5.
J Neurooncol ; 160(1): 253-263, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36239836

RESUMEN

PURPOSE: Although glioblastoma (GBM) is the most common primary brain malignancy, few tools exist to pre-operatively risk-stratify patients by overall survival (OS) or common genetic alterations. We developed an MRI-based radiomics model to identify patients with EGFR amplification, MGMT methylation, GBM subtype, and OS greater than 12 months. METHODS: We retrospectively identified 235 patients with pathologically confirmed GBMs from the Cancer Genome Atlas (88; TCGA) and MD Anderson Cancer Center (147; MDACC). After two neuroradiologists segmented MRI tumor volumes, we extracted first-order and second-order radiomic features (gray-level co-occurrence matrices). We used the Maximum Relevance Minimum Redundancy technique to identify the 100 most relevant features and validated models using leave-one-out-cross-validation and validation on external datasets (i.e., TCGA). Our results were reported as the area under the curve (AUC). RESULTS: The MDACC patient cohort had significantly higher OS (22 months) than the TCGA dataset (14 months). On both LOOCV and external validation, our radiomics models were able to identify EGFR amplification (all AUCs > 0.83), MGMT methylation (all AUCs > 0.85), GBM subtype (all AUCs > 0.92), and OS (AUC > 0.91 on LOOCV and 0.71 for TCGA validation). CONCLUSIONS: Our robust radiomics pipeline has the potential to pre-operatively discriminate common genetic alterations and identify patients with favorable survival.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Glioblastoma/cirugía , Estudios Retrospectivos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirugía , Imagen por Resonancia Magnética/métodos , Biomarcadores de Tumor/genética , Genómica , Receptores ErbB
6.
Radiol Case Rep ; 17(10): 3919-3922, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36032200

RESUMEN

Male breast lesions are relatively less common. The most encountered malignant lesion in the male breast is ductal adenocarcinoma; and benign lesions are gynecomastia, fibrocystic disease, intramammary lymph node, fibroadenoma, lipoma and epidermal inclusion cyst (EIC), respectively [5,6]. To date, there had been published only a few cases of EIC of the male breast in literature [3,5,6]. In this case, we aimed to present a new case of EIC with its clinical, radiological and pathological characteristics in the male breast. It had benign sonographic and magnetic resonance imaging findings but had also malignant imaging findings with diffusion restriction on diffusion-weighted imaging.

8.
J Exp Clin Cancer Res ; 41(1): 186, 2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35650597

RESUMEN

BACKGROUND: Immune-checkpoint inhibitors (ICIs) changed the therapeutic landscape of patients with lung cancer. However, only a subset of them derived clinical benefit and evidenced the need to identify reliable predictive biomarkers. Liquid biopsy is the non-invasive and repeatable analysis of biological material in body fluids and a promising tool for cancer biomarkers discovery. In particular, there is growing evidence that extracellular vesicles (EVs) play an important role in tumor progression and in tumor-immune interactions. Thus, we evaluated whether extracellular vesicle PD-L1 expression could be used as a biomarker for prediction of durable treatment response and survival in patients with non-small cell lung cancer (NSCLC) undergoing treatment with ICIs. METHODS: Dynamic changes in EV PD-L1 were analyzed in plasma samples collected before and at 9 ± 1 weeks during treatment in a retrospective and a prospective independent cohorts of 33 and 39 patients, respectively. RESULTS: As a result, an increase in EV PD-L1 was observed in non-responders in comparison to responders and was an independent biomarker for shorter progression-free survival and overall survival. To the contrary, tissue PD-L1 expression, the commonly used biomarker, was not predictive neither for durable response nor survival. CONCLUSION: These findings indicate that EV PD-L1 dynamics could be used to stratify patients with advanced NSCLC who would experience durable benefit from ICIs.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Vesículas Extracelulares , Neoplasias Pulmonares , Antígeno B7-H1/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Vesículas Extracelulares/metabolismo , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Estudios Prospectivos , Estudios Retrospectivos
9.
Sci Rep ; 12(1): 10826, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35760886

RESUMEN

Accurate skull stripping facilitates following neuro-image analysis. For computer-aided methods, the presence of brain skull in structural magnetic resonance imaging (MRI) impacts brain tissue identification, which could result in serious misjudgments, specifically for patients with brain tumors. Though there are several existing works on skull stripping in literature, most of them either focus on healthy brain MRIs or only apply for a single image modality. These methods may be not optimal for multiparametric MRI scans. In the paper, we propose an ensemble neural network (EnNet), a 3D convolutional neural network (3DCNN) based method, for brain extraction on multiparametric MRI scans (mpMRIs). We comprehensively investigate the skull stripping performance by using the proposed method on a total of 15 image modality combinations. The comparison shows that utilizing all modalities provides the best performance on skull stripping. We have collected a retrospective dataset of 815 cases with/without glioblastoma multiforme (GBM) at the University of Pittsburgh Medical Center (UPMC) and The Cancer Imaging Archive (TCIA). The ground truths of the skull stripping are verified by at least one qualified radiologist. The quantitative evaluation gives an average dice score coefficient and Hausdorff distance at the 95th percentile, respectively. We also compare the performance to the state-of-the-art methods/tools. The proposed method offers the best performance.The contributions of the work have five folds: first, the proposed method is a fully automatic end-to-end for skull stripping using a 3D deep learning method. Second, it is applicable for mpMRIs and is also easy to customize for any MRI modality combination. Third, the proposed method not only works for healthy brain mpMRIs but also pre-/post-operative brain mpMRIs with GBM. Fourth, the proposed method handles multicenter data. Finally, to the best of our knowledge, we are the first group to quantitatively compare the skull stripping performance using different modalities. All code and pre-trained model are available at: https://github.com/plmoer/skull_stripping_code_SR .


Asunto(s)
Glioblastoma , Imágenes de Resonancia Magnética Multiparamétrica , Algoritmos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación , Estudios Retrospectivos , Cráneo/diagnóstico por imagen , Cráneo/patología
10.
Artículo en Inglés | MEDLINE | ID: mdl-36998700

RESUMEN

Deep learning (DL) models have provided state-of-the-art performance in various medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology multi-compartment segmentation (e.g., tumor and lesion sub-regions) is particularly challenging, and potential errors hinder translating DL models into clinical workflows. Quantifying the reliability of DL model predictions in the form of uncertainties could enable clinical review of the most uncertain regions, thereby building trust and paving the way toward clinical translation. Several uncertainty estimation methods have recently been introduced for DL medical image segmentation tasks. Developing scores to evaluate and compare the performance of uncertainty measures will assist the end-user in making more informed decisions. In this study, we explore and evaluate a score developed during the BraTS 2019 and BraTS 2020 task on uncertainty quantification (QU-BraTS) and designed to assess and rank uncertainty estimates for brain tumor multi-compartment segmentation. This score (1) rewards uncertainty estimates that produce high confidence in correct assertions and those that assign low confidence levels at incorrect assertions, and (2) penalizes uncertainty measures that lead to a higher percentage of under-confident correct assertions. We further benchmark the segmentation uncertainties generated by 14 independent participating teams of QU-BraTS 2020, all of which also participated in the main BraTS segmentation task. Overall, our findings confirm the importance and complementary value that uncertainty estimates provide to segmentation algorithms, highlighting the need for uncertainty quantification in medical image analyses. Finally, in favor of transparency and reproducibility, our evaluation code is made publicly available at https://github.com/RagMeh11/QU-BraTS.

11.
EBioMedicine ; 71: 103571, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34530385

RESUMEN

BACKGROUND: Malignant gliomas are deadly tumours with few therapeutic options. Although immunotherapy may be a promising therapeutic strategy for treating gliomas, a significant barrier is the CD11b+ tumour-associated myeloid cells (TAMCs), a heterogeneous glioma infiltrate comprising up to 40% of a glioma's cellular mass that inhibits anti-tumour T-cell function and promotes tumour progression. A theranostic approach uses a single molecule for targeted radiopharmaceutical therapy (TRT) and diagnostic imaging; however, there are few reports of theranostics targeting the tumour microenvironment. METHODS: Utilizing a newly developed bifunctional chelator, Lumi804, an anti-CD11b antibody (αCD11b) was readily labelled with either Zr-89 or Lu-177, yielding functional radiolabelled conjugates for PET, SPECT, and TRT. FINDINGS: 89Zr/177Lu-labeled Lumi804-αCD11b enabled non-invasive imaging of TAMCs in murine gliomas. Additionally, 177Lu-Lumi804-αCD11b treatment reduced TAMC populations in the spleen and tumour and improved the efficacy of checkpoint immunotherapy. INTERPRETATION: 89Zr- and 177Lu-labeled Lumi804-αCD11b may be a promising theranostic pair for monitoring and reducing TAMCs in gliomas to improve immunotherapy responses. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Asunto(s)
Glioma/diagnóstico , Glioma/terapia , Linfocitos Infiltrantes de Tumor/metabolismo , Terapia Molecular Dirigida , Tomografía de Emisión de Positrones , Radiofármacos , Macrófagos Asociados a Tumores/metabolismo , Animales , Biomarcadores de Tumor , Línea Celular Tumoral , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Glioma/etiología , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunofenotipificación , Lutecio , Linfocitos Infiltrantes de Tumor/patología , Ratones , Imagen Multimodal/métodos , Tomografía de Emisión de Positrones/métodos , Radioisótopos , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Macrófagos Asociados a Tumores/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Circonio
12.
J Immunother Cancer ; 9(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34315823

RESUMEN

The need to identify biomarkers to predict immunotherapy response for rare cancers has been long overdue. We aimed to study this in our paper, 'Radiomics analysis for predicting pembrolizumab response in patients with advanced rare cancers'. In this response to the Letter to the Editor by Cunha et al, we explain and discuss the reasons behind choosing LASSO (Least Absolute Shrinkage and Selection Operator) and XGBoost (eXtreme Gradient Boosting) with LOOCV (Leave-One-Out Cross-Validation) as the feature selection and classifier method, respectively for our radiomics models. Also, we highlight what care was taken to avoid any overfitting on the models. Further, we checked for the multicollinearity of the features. Additionally, we performed 10-fold cross-validation instead of LOOCV to see the predictive performance of our radiomics models.


Asunto(s)
Estudios Retrospectivos , Humanos
13.
J Immunother Cancer ; 9(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33849924

RESUMEN

BACKGROUND: We present a radiomics-based model for predicting response to pembrolizumab in patients with advanced rare cancers. METHODS: The study included 57 patients with advanced rare cancers who were enrolled in our phase II clinical trial of pembrolizumab. Tumor response was evaluated using Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 and immune-related RECIST (irRECIST). Patients were categorized as 20 "controlled disease" (stable disease, partial response, or complete response) or 37 progressive disease). We used 3D-slicer to segment target lesions on standard-of-care, pretreatment contrast enhanced CT scans. We extracted 610 features (10 histogram-based features and 600 second-order texture features) from each volume of interest. Least absolute shrinkage and selection operator logistic regression was used to detect the most discriminatory features. Selected features were used to create a classification model, using XGBoost, for the prediction of tumor response to pembrolizumab. Leave-one-out cross-validation was performed to assess model performance. FINDINGS: The 10 most relevant radiomics features were selected; XGBoost-based classification successfully differentiated between controlled disease (complete response, partial response, stable disease) and progressive disease with high accuracy, sensitivity, and specificity in patients assessed by RECIST (94.7%, 97.3%, and 90%, respectively; p<0.001) and in patients assessed by irRECIST (94.7%, 93.9%, and 95.8%, respectively; p<0.001). Additionally, the common features of the RECIST and irRECIST groups also highly predicted pembrolizumab response with accuracy, sensitivity, specificity, and p value of 94.7%, 97%, 90%, p<0.001% and 96%, 96%, 95%, p<0.001, respectively. CONCLUSION: Our radiomics-based signature identified imaging differences that predicted pembrolizumab response in patients with advanced rare cancer. INTERPRETATION: Our radiomics-based signature identified imaging differences that predicted pembrolizumab response in patients with advanced rare cancer.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Interpretación de Imagen Radiográfica Asistida por Computador , Enfermedades Raras/diagnóstico por imagen , Enfermedades Raras/tratamiento farmacológico , Tomografía Computarizada por Rayos X , Adulto , Anciano , Anticuerpos Monoclonales Humanizados/efectos adversos , Antineoplásicos Inmunológicos/efectos adversos , Toma de Decisiones Clínicas , Ensayos Clínicos Fase II como Asunto , Progresión de la Enfermedad , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Masculino , Persona de Mediana Edad , Selección de Paciente , Valor Predictivo de las Pruebas , Criterios de Evaluación de Respuesta en Tumores Sólidos , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
14.
J Clin Med ; 10(7)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33915813

RESUMEN

Low-grade gliomas (LGGs) are tumors that affect mostly adults. These neoplasms are comprised mainly of oligodendrogliomas and diffuse astrocytomas. LGGs remain vexing to current management and therapeutic modalities although they exhibit more favorable survival rates compared with high-grade gliomas (HGGs). The specific genetic subtypes that these tumors exhibit result in variable clinical courses and the need to involve multidisciplinary teams of neurologists, epileptologists, neurooncologists and neurosurgeons. Currently, the diagnosis of an LGG pivots mainly around the preliminary radiological findings and the subsequent definitive surgical diagnosis (via surgical sampling). The introduction of radiomics as a high throughput quantitative imaging technique that allows for improved diagnostic, prognostic and predictive indices has created more interest for such techniques in cancer research and especially in neurooncology (MRI-based classification of LGGs, predicting Isocitrate dehydrogenase (IDH) and Telomerase reverse transcriptase (TERT) promoter mutations and predicting LGG associated seizures). Radiogenomics refers to the linkage of imaging findings with the tumor/tissue genomics. Numerous applications of radiomics and radiogenomics have been described in the clinical context and management of LGGs. In this review, we describe the recently published studies discussing the potential application of radiomics and radiogenomics in LGGs. We also highlight the potential pitfalls of the above-mentioned high throughput computerized techniques and, most excitingly, explore the use of machine learning artificial intelligence technologies as standalone and adjunct imaging tools en route to enhance a personalized MRI-based tumor diagnosis and management plan design.

15.
Adv Exp Med Biol ; 1342: 431-447, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34972979

RESUMEN

Immune therapeutics are revolutionizing cancer treatments. In tandem, new and confounding imaging characteristics have appeared that are distinct from those typically seen with conventional cytotoxic therapies. In fact, only 10% of patients on immunotherapy may show tumor shrinkage, typical of positive responses on conventional therapy. Conversely, those on immune therapies may initially demonstrate a delayed response, transient enlargement followed by tumor shrinkage, stable size, or the appearance of new lesions. Response Evaluation Criteria in Solid Tumors (RECIST) or WHO criteria, developed to identify early effects of cytotoxic agents, may not provide a complete evaluation of new emerging treatment response pattern of immunotherapeutic agents. Therefore, new imaging response criteria, such as the immune-related Response Evaluation Criteria in Solid Tumors (irRECIST), immune Response Evaluation Criteria in Solid Tumors (iRECIST), and immune-related Response Criteria (irRC), are proposed. However, FDA approval of emerging therapies including immunotherapies still relies on the current RECIST criteria. In this chapter, we review the traditional and new imaging response criteria for evaluation of solid tumors and briefly touch on some of the more commonly associated immunotherapy-induced adverse events.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/uso terapéutico , Diagnóstico por Imagen , Humanos , Inmunoterapia , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Criterios de Evaluación de Respuesta en Tumores Sólidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA