Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Laryngoscope Investig Otolaryngol ; 9(4): e1261, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39071205

RESUMEN

Objectives: Disruption of the oxidative stress defense system is involved in developing various diseases. Sulfur compounds such as glutathione (GSH) and cysteine (CysSH) are representative antioxidants in the body. Recently, supersulfides, including reactive persulfide and polysulfide species, have gained attention as potent antioxidants regulating oxidative stress and redox signaling. However, their involvement in the pathogenesis of chronic rhinosinusitis (CRS) remains unclear. Methods: To clarify the changes in sulfur compounds within the sinus mucosa of each CRS subtype, we measured sulfur compound levels in the sinus mucosa of control individuals (n = 9), patients with eosinophilic CRS (ECRS) (n = 13), and those with non-ECRS (nECRS) (n = 11) who underwent sinus surgery using mass spectrometry. Results: GSH and CysSH levels were significantly reduced, and the glutathione disulfide (GSSG)/GSH ratio, an oxidative stress indicator, was increased in patients with ECRS. Despite the absence of notable variations in supersulfides, patients with ECRS and nECRS exhibited a significant reduction in glutathione trisulfide (GSSSG), which serves as the precursor for supersulfides. Conclusions: This study is the first quantitative assessment of supersulfides in normal and inflamed sinus mucosa, suggesting that sulfur compounds contribute to the pathogenesis of CRS. Level of Evidence: N/A.

2.
Free Radic Biol Med ; 222: 539-551, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992395

RESUMEN

Oxygen molecules accept electrons from the respiratory chain in the mitochondria and are responsible for energy production in aerobic organisms. The reactive oxygen species formed via these oxygen reduction processes undergo complicated electron transfer reactions with other biological substances, which leads to alterations in their physiological functions and cause diverse biological and pathophysiological consequences (e.g., oxidative stress). Oxygen accounts for only a small proportion of the redox reactions in organisms, especially under aerobic or hypoxic conditions but not under anaerobic and hypoxic conditions. This article discusses a completely new concept of redox biology, which is governed by redox-active supersulfides, i.e., sulfur-catenated molecular species. These species are present in abundance in all organisms but remain largely unexplored in terms of redox biology and life science research. In fact, accumulating evidence shows that supersulfides have extensive redox chemical properties and that they can be readily ionized or radicalized to participate in energy metabolism, redox signaling, and oxidative stress responses in cells and in vivo. Thus, pharmacological intervention and medicinal modulation of supersulfide activities have been shown to benefit the regulation of disease pathogenesis as well as disease control.

3.
J Pharmacol Sci ; 155(4): 121-130, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38880546

RESUMEN

The atrophic myocardium resulting from mechanical unloading and nutritional deprivation is considered crucial as maladaptive remodeling directly associated with heart failure, as well as interstitial fibrosis. Conversely, myocardial hypertrophy resulting from hemodynamic loading is perceived as compensatory stress adaptation. We previously reported the abundant presence of highly redox-active polysulfide molecules, termed supersulfide, with two or more sulfur atoms catenated in normal hearts, and the supersulfide catabolism in pathologic hearts after myocardial infarction correlated with worsened prognosis of heart failure. However, the impact of supersulfide on myocardial remodeling remains unclear. Here, we investigated the involvement of supersulfide metabolism in cardiomyocyte remodeling, using a model of adenosine 5'-triphosphate (ATP) receptor-stimulated atrophy and endothelin-1 receptor-stimulated hypertrophy in neonatal rat cardiomyocytes. Results revealed contrasting changes in intracellular supersulfide and its catabolite, hydrogen sulfide (H2S), between cardiomyocyte atrophy and hypertrophy. Stimulation of cardiomyocytes with ATP decreased supersulfide activity, while H2S accumulation itself did not affect cardiomyocyte atrophy. This supersulfide catabolism was also involved in myofibroblast formation of neonatal rat cardiac fibroblasts. Thus, unraveling supersulfide metabolism during myocardial remodeling may lead to the development of novel therapeutic strategies to improve heart failure.


Asunto(s)
Sulfuro de Hidrógeno , Miocitos Cardíacos , Sulfuros , Remodelación Ventricular , Animales , Miocitos Cardíacos/metabolismo , Sulfuros/metabolismo , Sulfuros/farmacología , Sulfuro de Hidrógeno/metabolismo , Células Cultivadas , Adenosina Trifosfato/metabolismo , Ratas , Atrofia , Cardiomegalia/metabolismo , Cardiomegalia/patología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Animales Recién Nacidos , Ratas Sprague-Dawley
4.
J Clin Invest ; 134(15)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38870029

RESUMEN

Leigh syndrome is the most common inherited mitochondrial disease in children and is often fatal within the first few years of life. In 2020, mutations in the gene encoding sulfide:quinone oxidoreductase (SQOR), a mitochondrial protein, were identified as a cause of Leigh syndrome. Here, we report that mice with a mutation in the gene encoding SQOR (SqorΔN/ΔN mice), which prevented SQOR from entering mitochondria, had clinical and pathological manifestations of Leigh syndrome. SqorΔN/ΔN mice had increased blood lactate levels that were associated with markedly decreased complex IV activity and increased hydrogen sulfide (H2S) levels. Because H2S is produced by both gut microbiota and host tissue, we tested whether metronidazole (a broad-spectrum antibiotic) or a sulfur-restricted diet rescues SqorΔN/ΔN mice from developing Leigh syndrome. Daily treatment with metronidazole alleviated increased H2S levels, normalized complex IV activity and blood lactate levels, and prolonged the survival of SqorΔN/ΔN mice. Similarly, a sulfur-restricted diet normalized blood lactate levels and inhibited the development of Leigh syndrome. Taken together, these observations suggest that mitochondrial SQOR is essential to prevent systemic accumulation of H2S. Metronidazole administration and a sulfur-restricted diet may be therapeutic approaches to treatment of patients with Leigh syndrome caused by mutations in SQOR.


Asunto(s)
Sulfuro de Hidrógeno , Enfermedad de Leigh , Mitocondrias , Quinona Reductasas , Animales , Enfermedad de Leigh/genética , Enfermedad de Leigh/metabolismo , Enfermedad de Leigh/patología , Enfermedad de Leigh/enzimología , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/enzimología , Quinona Reductasas/genética , Quinona Reductasas/metabolismo , Sulfuro de Hidrógeno/metabolismo , Metronidazol/farmacología , Mutación , Sulfuros/farmacología
5.
Nat Struct Mol Biol ; 31(8): 1277-1285, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38867112

RESUMEN

Ferroptosis is a form of regulated cell death induced by iron-dependent accumulation of lipid hydroperoxides. Selenoprotein glutathione peroxidase 4 (GPX4) suppresses ferroptosis by detoxifying lipid hydroperoxides via a catalytic selenocysteine (Sec) residue. Sec, the genetically encoded 21st amino acid, is biosynthesized from a reactive selenium donor on its cognate tRNA[Ser]Sec. It is thought that intracellular selenium must be delivered 'safely' and 'efficiently' by a carrier protein owing to its high reactivity and very low concentrations. Here, we identified peroxiredoxin 6 (PRDX6) as a novel selenoprotein synthesis factor. Loss of PRDX6 decreases the expression of selenoproteins and induces ferroptosis via a reduction in GPX4. Mechanistically, PRDX6 increases the efficiency of intracellular selenium utilization by transferring selenium between proteins within the selenocysteyl-tRNA[Ser]Sec synthesis machinery, leading to efficient synthesis of selenocysteyl-tRNA[Ser]Sec. These findings highlight previously unidentified selenium metabolic systems and provide new insights into ferroptosis.


Asunto(s)
Ferroptosis , Hierro , Peroxiredoxina VI , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Selenio , Ferroptosis/efectos de los fármacos , Selenio/metabolismo , Hierro/metabolismo , Humanos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Animales , Peroxiredoxina VI/metabolismo , Peroxiredoxina VI/genética , Ratones , Selenoproteínas/metabolismo , Selenocisteína/metabolismo , Aminoacil-ARN de Transferencia/metabolismo
6.
Redox Biol ; 73: 103222, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38843767

RESUMEN

BACKGROUND: Cystathionine ß-synthase (CBS)-deficient homocystinuria (HCU) is an inherited disorder of sulfur amino acid metabolism with varying severity and organ complications, and a limited knowledge about underlying pathophysiological processes. Here we aimed at getting an in-depth insight into disease mechanisms using a transgenic mouse model of HCU (I278T). METHODS: We assessed metabolic, proteomic and sphingolipidomic changes, and mitochondrial function in tissues and body fluids of I278T mice and WT controls. Furthermore, we evaluated the efficacy of methionine-restricted diet (MRD) in I278T mice. RESULTS: In WT mice, we observed a distinct tissue/body fluid compartmentalization of metabolites with up to six-orders of magnitude differences in concentrations among various organs. The I278T mice exhibited the anticipated metabolic imbalance with signs of an increased production of hydrogen sulfide and disturbed persulfidation of free aminothiols. HCU resulted in a significant dysregulation of liver proteome affecting biological oxidations, conjugation of compounds, and metabolism of amino acids, vitamins, cofactors and lipids. Liver sphingolipidomics indicated upregulation of the pro-proliferative sphingosine-1-phosphate signaling pathway. Liver mitochondrial function of HCU mice did not seem to be impaired compared to controls. MRD in I278T mice improved metabolic balance in all tissues and substantially reduced dysregulation of liver proteome. CONCLUSION: The study highlights distinct tissue compartmentalization of sulfur-related metabolites in normal mice, extensive metabolome, proteome and sphingolipidome disruptions in I278T mice, and the efficacy of MRD to alleviate some of the HCU-related biochemical abnormalities.


Asunto(s)
Cistationina betasintasa , Modelos Animales de Enfermedad , Homocistinuria , Hígado , Metabolómica , Ratones Transgénicos , Proteómica , Esfingolípidos , Animales , Ratones , Homocistinuria/metabolismo , Homocistinuria/genética , Proteómica/métodos , Cistationina betasintasa/metabolismo , Cistationina betasintasa/deficiencia , Cistationina betasintasa/genética , Hígado/metabolismo , Metabolómica/métodos , Esfingolípidos/metabolismo , Mitocondrias/metabolismo , Lipidómica/métodos , Proteoma/metabolismo
7.
Nat Metab ; 6(6): 1108-1127, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38822028

RESUMEN

Oxygen is critical for all metazoan organisms on the earth and impacts various biological processes in physiological and pathological conditions. While oxygen-sensing systems inducing acute hypoxic responses, including the hypoxia-inducible factor pathway, have been identified, those operating in prolonged hypoxia remain to be elucidated. Here we show that pyridoxine 5'-phosphate oxidase (PNPO), which catalyses bioactivation of vitamin B6, serves as an oxygen sensor and regulates lysosomal activity in macrophages. Decreased PNPO activity under prolonged hypoxia reduced an active form of vitamin B6, pyridoxal 5'-phosphate (PLP), and inhibited lysosomal acidification, which in macrophages led to iron dysregulation, TET2 protein loss and delayed resolution of the inflammatory response. Among PLP-dependent metabolism, supersulfide synthesis was suppressed in prolonged hypoxia, resulting in the lysosomal inhibition and consequent proinflammatory phenotypes of macrophages. The PNPO-PLP axis creates a distinct layer of oxygen sensing that gradually shuts down PLP-dependent metabolism in response to prolonged oxygen deprivation.


Asunto(s)
Lisosomas , Macrófagos , Fosfato de Piridoxal , Lisosomas/metabolismo , Macrófagos/metabolismo , Animales , Ratones , Fosfato de Piridoxal/metabolismo , Hipoxia/metabolismo , Hipoxia de la Célula , Vitamina B 6/metabolismo , Oxígeno/metabolismo , Inflamación/metabolismo
8.
Nat Commun ; 15(1): 2453, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503758

RESUMEN

Reactive sulfane sulfur species such as persulfides (RSSH) and H2S2 are important redox regulators and closely linked to H2S signaling. However, the study of these species is still challenging due to their instability, high reactivity, and the lack of suitable donors to produce them. Herein we report a unique compound, 2H-thiopyran-2-thione sulfine (TTS), which can specifically convert H2S to HSOH, and then to H2S2 in the presence of excess H2S. Meanwhile, the reaction product 2H-thiopyran-2-thione (TT) can be oxidized to reform TTS by biological oxidants. The reaction mechanism of TTS is studied experimentally and computationally. TTS can be conjugated to proteins to achieve specific delivery, and the combination of TTS and H2S leads to highly efficient protein persulfidation. When TTS is applied in conjunction with established H2S donors, the corresponding donors of H2S2 (or its equivalents) are obtained. Cell-based studies reveal that TTS can effectively increase intracellular sulfane sulfur levels and compensate for certain aspects of sulfide:quinone oxidoreductase (SQR) deficiency. These properties make TTS a conceptually new strategy for the design of donors of reactive sulfane sulfur species.


Asunto(s)
Sulfuro de Hidrógeno , Piranos , Compuestos de Sulfhidrilo , Sulfuro de Hidrógeno/metabolismo , Tionas , Sulfuros/metabolismo , Azufre/metabolismo , Oxidación-Reducción , Proteínas/metabolismo
9.
Redox Biol ; 70: 103053, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38340634

RESUMEN

Although reactive oxygen species (ROS) are known to have harmful effects in organisms, recent studies have demonstrated expression of ROS synthases at various parts of the organisms and the controlled ROS generation, suggesting possible involvement of ROS signaling in physiological events of individuals. However, physiological roles of ROS in the CNS, including functional roles in higher brain functions or neuronal activity-dependent ROS production, remain to be elucidated. Here, we demonstrated involvement of ROS - 8-NO2-cGMP signaling in motor learning and synaptic plasticity in the cerebellum. In the presence of inhibitors of ROS signal or ROS synthases, cerebellar motor learning was impaired, and the stimulus inducing long-term depression (LTD), cellular basis for the motor learning, failed to induce LTD but induced long-term potentiation (LTP)-like change at cerebellar synapses. Furthermore, ROS was produced by LTD-inducing stimulus in enzyme-dependent manner, and excess administration of the antioxidant vitamin E impaired cerebellar motor learning, suggesting beneficial roles of endogenous ROS in the learning. As a downstream signal, involvement of 8-NO2-cGMP in motor learning and cerebellar LTD were also revealed. These findings indicate that ROS - 8-NO2-cGMP signal is activated by neuronal activity and is essential for cerebellum-dependent motor learning and synaptic plasticity, demonstrating involvement of the signal in physiological function of brain systems.


Asunto(s)
GMP Cíclico/análogos & derivados , Plasticidad Neuronal , Dióxido de Nitrógeno , Humanos , Especies Reactivas de Oxígeno/metabolismo , Dióxido de Nitrógeno/metabolismo , Plasticidad Neuronal/fisiología , Cerebelo/metabolismo , Memoria a Largo Plazo
10.
Redox Biol ; 69: 103018, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199039

RESUMEN

Supersulfides, which are defined as sulfur species with catenated sulfur atoms, are increasingly being investigated in biology. We recently identified pyridoxal phosphate (PLP)-dependent biosynthesis of cysteine persulfide (CysSSH) and related supersulfides by cysteinyl-tRNA synthetase (CARS). Here, we investigated the physiological role of CysSSH in budding yeast (Saccharomyces cerevisiae) by generating a PLP-binding site mutation K109A in CRS1 (the yeast ortholog of CARS), which decreased the synthesis of CysSSH and related supersulfides and also led to reduced chronological aging, effects that were associated with an increased endoplasmic reticulum stress response and impaired mitochondrial bioenergetics. Reduced chronological aging in the K109A mutant could be rescued by using exogenous supersulfide donors. Our findings indicate important roles for CARS in the production and metabolism of supersulfides-to mediate mitochondrial function and to regulate longevity.


Asunto(s)
Longevidad , Proteínas de Saccharomyces cerevisiae , Mitocondrias/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Azufre/metabolismo
11.
Int Immunol ; 36(4): 143-154, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38180817

RESUMEN

Innate immunity plays an important role in host defense against microbial infections. It also participates in activation of acquired immunity through cytokine production and antigen presentation. Pattern recognition receptors such as Toll-like receptors and nucleotide oligomerization domain-like receptors sense invading pathogens and associated tissue injury, after which inflammatory mediators such as pro-inflammatory cytokines and nitric oxide are induced. Supersulfides are molecular species possessing catenated sulfur atoms such as persulfide and polysulfide moieties. They have recently been recognized as important regulators in cellular redox homeostasis by acting as potent antioxidants and nucleophiles. In addition, recent studies suggested that supersulfides are critically involved in the regulation of innate immune and inflammatory responses. In this review, we summarize current knowledge of the chemistry and biology of supersulfides, with particular attention to their roles in regulation of innate immune, and inflammatory responses. Studies with animal models of infection and inflammation demonstrated the potent anti-inflammatory functions of supersulfides such as blocking pro-inflammatory signaling cascades, reducing oxidative stresses, and inhibiting replication of microbial pathogens including severe acute respiratory syndrome coronavirus 2. Precise understanding of how supersulfides regulate innate immune responses is the necessary requirement for developing supersulfide-based diagnostic as well as therapeutic strategies against inflammatory disorders.


Asunto(s)
Inmunidad Adaptativa , Inmunidad Innata , Animales , Transducción de Señal , Citocinas , Receptores Toll-Like
12.
J Oral Biosci ; 66(1): 76-81, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37979656

RESUMEN

OBJECTIVES: While chondrocytes have mitochondria, they receive little O2 from the bloodstream. Sulfur respiration, an essential energy production system in mitochondria, uses supersulfides instead of O2. Supersulfides are inorganic and organic sulfides with catenated sulfur atoms and are primarily produced by cysteinyl tRNA synthetase-2 (CARS2). Here, we investigated the role of supersulfides in chondrocyte proliferation and bone growth driven by growth plate chondrocyte proliferation. METHODS: We examined the effects of NaHS, an HS-/H2S donor, and cystine, the cellular source of cysteine, on the proliferation of mouse primary chondrocytes and growth of embryonic mouse tibia in vitro. We also examined the effect of RNA interference acting on the Cars2 gene on chondrocyte proliferation in the presence of cystine. RESULTS: NaHS (30 µmol/L) enhanced tibia longitudinal growth in vitro with expansion of the proliferating zone of their growth plates. While NaHS (30 µmol/L) also promoted chondrocyte proliferation only under normoxic conditions (20 % O2), cystine (0.5 mmol/L) promoted it under both normoxic and hypoxic (2 % O2) conditions. Cars2 gene knockdown abrogated the ability of cystine (0.5 mmol/L) to promote chondrocyte proliferation under normoxic conditions, indicating that supersulfides produced by CARS2 were responsible for the cystine-dependent promotion of bone growth. CONCLUSIONS: The presented results indicate that supersulfides play a vital role in bone growth achieved by chondrocyte proliferation in the growth plates driven by sulfur respiration.


Asunto(s)
Condrocitos , Placa de Crecimiento , Ratones , Animales , Cistina/farmacología , Proliferación Celular , Desarrollo Óseo , Azufre/farmacología
13.
Antioxid Redox Signal ; 40(10-12): 679-690, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37294201

RESUMEN

Significance: Routine exposure to xenobiotics is unavoidable during our lifetimes. Certain xenobiotics are hazardous to human health, and are metabolized in the body to render them less toxic. During this process, several detoxification enzymes cooperatively metabolize xenobiotics. Glutathione (GSH) conjugation plays an important role in the metabolism of electrophilic xenobiotics. Recent Advances: Recent advances in reactive sulfur and supersulfide (RSS) analyses showed that persulfides and polysulfides bound to low-molecular-weight thiols, such as GSH, and to protein thiols are abundant in both eukaryotes and prokaryotes. The highly nucleophilic nature of hydropersulfides and hydropolysulfides contributes to cell protection against oxidative stress and electrophilic stress. Critical Issues: In contrast to GSH conjugation to electrophiles that is aided by glutathione S-transferase (GST), persulfides and polysulfides can directly form conjugates with electrophiles without the catalytic actions of GST. The polysulfur bonds in the conjugates are further reduced by perthioanions and polythioanions derived from RSS to form sulfhydrated metabolites that are no longer electrophilic but rather nucleophilic, and differ from metabolites that are formed via GSH conjugation. Future Directions: In view of the abundance of RSS in cells and tissues, metabolism of xenobiotics that is mediated by RSS warrants additional investigations, such as studies of the impact of microbiota-derived RSS on xenobiotic metabolism. Metabolites formed from reactions between electrophiles and RSS may be potential biomarkers for monitoring exposure to electrophiles and for studying their metabolism by RSS. Antioxid. Redox Signal. 40, 679-690.


Asunto(s)
Sulfuros , Azufre , Xenobióticos , Humanos , Xenobióticos/metabolismo , Azufre/metabolismo , Oxidación-Reducción , Compuestos de Sulfhidrilo/metabolismo
14.
Anal Biochem ; 685: 115392, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37967784

RESUMEN

Sulfur is essential in the inception of life and crucial for maintaining human health. This mineral is primarily supplied through the intake of proteins and is used for synthesizing various sulfur-containing biomolecules. Recent research has highlighted the biological significance of endogenous supersulfides, which include reactive persulfide species and sulfur catenated residues in thiol and proteins. Ingestion of exogenous sulfur compounds is essential for endogenous supersulfide production. However, the content and composition of supersulfides in foods remain unclear. This study investigated the supersulfide profiles of protein-rich foods, including edible animal meat and beans. Quantification of the supersulfide content revealed that natto, chicken liver, and bean sprouts contained abundant supersulfides. In general, the supersulfide content in beans and their derivatives was higher than that in animal meat. The highest proportion (2.15 %) was detected in natto, a traditional Japanese fermented soybean dish. These results suggest that the abundance of supersulfides, especially in foods like natto and bean sprouts, may contribute to their health-promoting properties. Our findings may have significant biological implications and warrant developing novel dietary intervention for the human health-promoting effects of dietary supersulfides abundantly present in protein-rich foods such as natto and bean sprouts.


Asunto(s)
Glycine max , Alimentos de Soja , Humanos , Carne , Azufre
15.
Front Microbiol ; 14: 1276447, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965540

RESUMEN

A principal concept in developing antibacterial agents with selective toxicity is blocking metabolic pathways that are critical for bacterial growth but that mammalian cells lack. Serine O-acetyltransferase (CysE) is an enzyme in many bacteria that catalyzes the first step in l-cysteine biosynthesis by transferring an acetyl group from acetyl coenzyme A (acetyl-CoA) to l-serine to form O-acetylserine. Because mammalian cells lack this l-cysteine biosynthesis pathway, developing an inhibitor of CysE has been thought to be a way to establish a new class of antibacterial agents. Here, we demonstrated that alkyl gallates such as octyl gallate (OGA) could act as potent CysE inhibitors in vitro and in bacteria. Mass spectrometry analyses indicated that OGA treatment markedly reduced intrabacterial levels of l-cysteine and its metabolites including glutathione and glutathione persulfide in Escherichia coli to a level similar to that found in E. coli lacking the cysE gene. Consistent with the reduction of those antioxidant molecules in bacteria, E. coli became vulnerable to hydrogen peroxide-mediated bacterial killing in the presence of OGA. More important, OGA treatment intensified susceptibilities of metallo-ß-lactamase-expressing Gram-negative bacteria (E. coli and Klebsiella pneumoniae) to carbapenem. Structural analyses showed that alkyl gallate bound to the binding site for acetyl-CoA that limits access of acetyl-CoA to the active site. Our data thus suggest that CysE inhibitors may be used to treat infectious diseases caused by drug-resistant Gram-negative bacteria not only via direct antibacterial activity but also by enhancing therapeutic potentials of existing antibiotics.

16.
Br J Pharmacol ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872133

RESUMEN

For decades, the major focus of redox biology has been oxygen, the most abundant element on Earth. Molecular oxygen functions as the final electron acceptor in the mitochondrial respiratory chain, contributing to energy production in aerobic organisms. In addition, oxygen-derived reactive oxygen species including hydrogen peroxide and nitrogen free radicals, such as superoxide, hydroxyl radical and nitric oxide radical, undergo a complicated sequence of electron transfer reactions with other biomolecules, which lead to their modified physiological functions and diverse biological and pathophysiological consequences (e.g. oxidative stress). What is now evident is that oxygen accounts for only a small number of redox reactions in organisms and knowledge of biological redox reactions is still quite limited. This article reviews a new aspects of redox biology which is governed by redox-active sulfur-containing molecules-supersulfides. We define the term 'supersulfides' as sulfur species with catenated sulfur atoms. Supersulfides were determined to be abundant in all organisms, but their redox biological properties have remained largely unexplored. In fact, the unique chemical properties of supersulfides permit them to be readily ionized or radicalized, thereby allowing supersulfides to actively participate in redox reactions and antioxidant responses in cells. Accumulating evidence has demonstrated that supersulfides are indispensable for fundamental biological processes such as energy production, nucleic acid metabolism, protein translation and others. Moreover, manipulation of supersulfide levels was beneficial for pathogenesis of various diseases. Thus, supersulfide biology has opened a new era of disease control that includes potential applications to clinical diagnosis, prevention and therapeutics of diseases.

17.
Redox Biol ; 67: 102875, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37699321

RESUMEN

Higher consumption of broccoli (Brassica oleracea var. italica) is associated with a reduced risk of cardiometabolic diseases, neurological disorders, diabetes, and cancer. Broccoli is rich in various phytochemicals, including glucosinolates, and isothiocyanates. Moreover, it has recently reported the endogenous production of polysulfides, such as cysteine hydropersulfide (CysS2H) and glutathione hydropersulfide (GS2H), in mammals including humans, and that these bioactive substances function as potent antioxidants and important regulators of redox signaling in vivo. However, few studies have focused on the endogenous polysulfide content of broccoli and the impact of germination on the polysulfide content and composition in broccoli. In this study, we investigated the alternations in polysulfide biosynthesis in broccoli during germination by performing untargeted polysulfide omics analysis and quantitative targeted polysulfide metabolomics through liquid chromatography-electrospray ionization-tandem mass spectrometry. We also performed 2,2-diphenyl-1-picrylhydrazyl radical-scavenging assay to determine the antioxidant properties of the polysulfides. The results revealed that the total polysulfide content of broccoli sprouts significantly increased during germination and growth; CysS2H and cysteine hydrotrisulfide were the predominant organic polysulfide metabolites. Furthermore, we determined that novel sulforaphane (SFN) derivatives conjugated with CysS2H and GS2H were endogenously produced in the broccoli sprouts, and the novel SFN conjugated with CysS2H exhibited a greater radical scavenging capacity than SFN and cysteine. These results suggest that the abundance of polysulfides in broccoli sprouts contribute to their health-promoting properties. Our findings have important biological implications for the development of novel pharmacological targets for the health-promoting effects of broccoli sprouts in humans.


Asunto(s)
Brassica , Cisteína , Animales , Humanos , Cisteína/metabolismo , Isotiocianatos/farmacología , Brassica/química , Brassica/metabolismo , Antioxidantes/metabolismo , Mamíferos/metabolismo
18.
Br J Pharmacol ; 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37715470

RESUMEN

The KEAP1-NRF2 system plays a central role in cytoprotection in defence mechanisms against oxidative stress. The KEAP1-NRF2 system has been regarded as a sulfur-utilizing cytoprotective mechanism, because KEAP1 serves as a biosensor for electrophiles by using its reactive thiols and NRF2 is a transcriptional factor regulating genes involved in sulfur-mediated redox reactions. NRF2 is a key regulator of cytoprotective genes, such as antioxidant and detoxification genes, and also possesses potent anti-inflammatory activity. Recently NRF2 has been the focus of attention as a regulator of cellular metabolism and mitochondrial function. The NRF2-mediated regulatory mechanisms of metabolites and mitochondria have been considered diverse, but have not yet been fully clarified. This review article provides an overview of molecular mechanisms that regulate NRF2 signalling and its cytoprotective roles, and highlights NRF2 contribution to cellular metabolism, particularly in the context of mitochondrial function and newly-found sulfur metabolism.

19.
J Clin Invest ; 133(17)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37655658

RESUMEN

Red blood cells (RBCs) mediate cardioprotection via nitric oxide-like bioactivity, but the signaling and the identity of any mediator released by the RBCs remains unknown. We investigated whether RBCs exposed to hypoxia release a cardioprotective mediator and explored the nature of this mediator. Perfusion of isolated hearts subjected to ischemia-reperfusion with extracellular supernatant from mouse RBCs exposed to hypoxia resulted in improved postischemic cardiac function and reduced infarct size. Hypoxia increased extracellular export of cyclic guanosine monophosphate (cGMP) from mouse RBCs, and exogenous cGMP mimicked the cardioprotection induced by the supernatant. The protection induced by hypoxic RBCs was dependent on RBC-soluble guanylate cyclase and cGMP transport and was sensitive to phosphodiesterase 5 and activated cardiomyocyte protein kinase G. Oral administration of nitrate to mice to increase nitric oxide bioactivity further enhanced the cardioprotective effect of hypoxic RBCs. In a placebo-controlled clinical trial, a clear cardioprotective, soluble guanylate cyclase-dependent effect was induced by RBCs collected from patients randomized to 5 weeks nitrate-rich diet. It is concluded that RBCs generate and export cGMP as a response to hypoxia, mediating cardioprotection via a paracrine effect. This effect can be further augmented by a simple dietary intervention, suggesting preventive and therapeutic opportunities in ischemic heart disease.


Asunto(s)
Cardiotónicos , GMP Cíclico , Eritrocitos , Guanilil Ciclasa Soluble , Animales , Ratones , Hipoxia , Miocitos Cardíacos , Nitratos , Óxido Nítrico , Ratas , Humanos
20.
Redox Biol ; 65: 102834, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37536084

RESUMEN

The excessive inflammatory response of macrophages plays a vital role in the pathogenesis of various diseases. The dynamic metabolic alterations in macrophages, including amino acid metabolism, are known to orchestrate their inflammatory phenotype. To explore a new metabolic pathway that regulates the inflammatory response, we examined metabolome changes in mouse peritoneal macrophages (PMs) in response to lipopolysaccharide (LPS) and found a coordinated increase of cysteine and its related metabolites, suggesting an enhanced demand for cysteine during the inflammatory response. Because Slc7a11, which encodes a cystine transporter xCT, was remarkably upregulated upon the pro-inflammatory challenge and found to serve as a major channel of cysteine supply, we examined the inflammatory behavior of Slc7a11 knockout PMs (xCT-KO PMs) to clarify an impact of the increased cysteine demand on inflammation. The xCT-KO PMs exhibited a prolonged upregulation of pro-inflammatory genes, which was recapitulated by cystine depletion in the culture media of wild-type PMs, suggesting that cysteine facilitates the resolution of inflammation. Detailed analysis of the sulfur metabolome revealed that supersulfides, such as cysteine persulfide, were increased in PMs in response to LPS, which was abolished in xCT-KO PMs. Supplementation of N-acetylcysteine tetrasulfide (NAC-S2), a supersulfide donor, attenuated the pro-inflammatory gene expression in xCT-KO PMs. Thus, activated macrophages increase cystine uptake via xCT and produce supersulfides, creating a negative feedback loop to limit excessive inflammation. Our study highlights the finely tuned regulation of macrophage inflammatory response by sulfur metabolism.


Asunto(s)
Cistina , Lipopolisacáridos , Ratones , Animales , Retroalimentación , Macrófagos/metabolismo , Acetilcisteína , Azufre/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA