Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
2.
ACS Omega ; 9(23): 24558-24573, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38882139

RESUMEN

Recently, hybrid nanoflowers (hNFs), which are accepted as popular carrier supports in the development of enzyme immobilization strategies, have attracted much attention. In this study, the horseradish peroxidase (HRP) was immobilized to mesoporous magnetic Fe3O4-NH2 by forming Schiff base compounds and the HRP@Fe3O4-NH2/hNFs were then synthesized. Under optimal conditions, 95.0% of the available HRP was immobilized on the Fe3O4-NH2/hNFs. Structural morphology and characterization of synthesized HRP@Fe3O4-NH2/hNFs were investigated. The results demonstrated that the average size of HRP@Fe3O4-NH2/hNFs was determined to be around 220 nm. The ζ-potential and magnetic saturation values of HRP@Fe3O4-NH2/hNFs were -33.58 mV and ∼30 emu/g, respectively. Additionally, the optimum pH, optimum temperature, thermal stability, kinetic parameters, reusability, and storage stability were examined. It was observed that the optimum pH value shifted from 5.0 to pH 8.0 after immobilization, while the optimum temperature shifted from 30 to 80 °C. K m values were calculated to be 15.5502 and 7.6707 mM for free HRP and the HRP@Fe3O4-NH2/hNFs, respectively, and V max values were calculated to be 0.0701 and 0.0038 mM min-1. The low K m value observed after immobilization indicated that the affinity of HRP for its substrate increased. The HRP@Fe3O4-NH2/hNFs showed higher thermal stability than free HRP, and its residual activity after six usage cycles was approximately 45%. While free HRP lost all of its activity within 120 min at 65 °C, the HRP@Fe3O4-NH2/hNFs retained almost all of its activity during the 6 h incubation period at 80 °C. Most importantly, the HRP@Fe3O4-NH2/hNFs demonstrated good potential efficiency for the biodegradation of methyl orange, phenol red, and methylene blue dyes. The HRP@Fe3O4-NH2/hNFs were used for a total of 8 cycles to degrade methyl orange, phenol red, and methylene blue, and degradation of around 81, 96, and 56% was obtained in 8 h, respectively. Overall, we believe that the HRP@Fe3O4-NH2/hNFs reported in this work can be potentially used in various industrial and environmental applications, particularly for the biodegradation of recalcitrant compounds, such as textile dyes.

3.
Ind Eng Chem Res ; 63(14): 6235-6248, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38617109

RESUMEN

Polyvinyl chloride (PVC) is commonly utilized as a food-contact surface by the food industry for processing and storage purposes due to its durability, ease of fabrication, and cost-effectiveness. Herein, we report a composite coating for the superhydrophobization of PVC without the use of polyfluoroalkyl chemistry. This coating rendered the PVC superhydrophobic, exhibiting a static water contact angle of 151.9 ± 0.7° and a contact angle hysteresis of only 3.1 ± 1.0°. The structure of this composite coating, consisting of polydopamine, nanodiamonds, and an alkyl silane, was investigated by utilizing both scanning electron microscopy and atomic force microscopy. Surface chemistry was probed using attenuated total reflectance-Fourier transform infrared, and the surface wetting behavior was thoroughly characterized using both static and dynamic water contact angle measurements. It was demonstrated that the superhydrophobic PVC was cleanable using a food-grade surfactant, becoming wet in contact with high concentration surfactant solutions, but regaining its nonwetting property upon rinsing with water. It was demonstrated that the coating produced a 2.1 ± 0.1 log10 reduction (99.2%) in the number of Escherichia coli O157:H7 cells and a 2.2 ± 0.1 log10 reduction (99.3%) in the number of Salmonella enterica Typhimurium cells that were able to adsorb onto PVC surfaces over a 24 h period. The use of this fluorine-free superhydrophobic coating on PVC equipment, such as conveyor belts within food production facilities, may help to mitigate bacterial cross-contamination and curb the spread of foodborne illnesses.

4.
ACS Sustain Chem Eng ; 12(13): 5197-5210, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38577585

RESUMEN

Identifying the descriptors for the synergistic catalytic activity of bifunctional oxide-zeolite catalysts constitutes a formidable challenge in realizing the potential of tandem hydrogenation of CO2 to hydrocarbons (HC) for sustainable fuel production. Herein, we combined CH3OH synthesis from CO2 and H2 on In2O3 and methanol-to-hydrocarbons (MTH) conversion on HZSM-5 and discerned the descriptors by leveraging the distance-dependent reactivity of bifunctional In2O3 and HZSM-5 admixtures. We modulated the distance between redox sites of In2O3 and acid sites of HZSM-5 from milliscale (∼10 mm) to microscale (∼300 µm) and observed a 3-fold increase in space-time yield of HC and CH3OH (7.5 × 10-5 molC gcat-1 min-1 and 2.5 × 10-5 molC gcat-1 min-1, respectively), due to a 10-fold increased rate of CH3OH advection (1.43 and 0.143 s-1 at microscale and milliscale, respectively) from redox to acid sites. Intriguingly, despite the potential of a three-order-of-magnitude enhanced CH3OH transfer at a nanoscale distance (∼300 nm), the sole product formed was CH4. Our reactivity data combined with Raman, Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS) revealed the occurrence of solid-state-ion-exchange (SSIE) between acid sites and Inδ+ ions, likely forming In2O moieties, inhibiting C-C coupling and promoting CH4 formation through CH3OH hydrodeoxygenation (HDO). Density functional theory (DFT) calculations further revealed that CH3OH adsorption on the In2O moiety with preadsorbed and dissociated H2 forming an H-In-OH-In moiety is the likely reaction mechanism, with the kinetically relevant step appearing to be the hydrogenation of the methyl species. Overall, our study revealed that efficient CH3OH transfer and prevention of ion exchange are the key descriptors in achieving catalytic synergy in bifunctional In2O3/HZSM-5 systems.

5.
Curr Res Food Sci ; 8: 100667, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38292343

RESUMEN

Post-harvest losses of fruits due to decay and concerns regarding microbial food safety are significant within the produce processing industry. Additionally, maintaining the quality of exported commodities to distant countries continues to pose a challenge. To address these issues, the application of bioactive compounds, such as essential oils, has gained recognition as a means to extend shelf life by acting as antimicrobials. Herein, we have undertaken an innovative approach by nano-encapsulating cinnamon-bark essential oil using whey protein concentrate and imbibing nano-encapsulates into food-grade wax commonly applied on produce surfaces. We have comprehensively examined the physical, chemical, and antimicrobial properties of this hybrid wax to evaluate its efficacy in combatting the various foodborne pathogens that frequently trouble producers and handlers in the post-harvest processing industry. The coatings as applied demonstrated a static contact angle of 85 ± 1.6°, and advancing and receding contact angles of 90 ± 1.1° and 53.0 ± 1.6°, respectively, resembling the wetting properties of natural waxes on apples. Nanoencapsulation significantly delayed the release of essential oil, increasing the half-life by 61 h compared to its unencapsulated counterparts. This delay correlated with statistically significant reductions (p = 0.05) in bacterial populations providing both immediate and delayed (up to 72 h) antibacterial effects as well as expanded fungal growth inhibition zones compared to existing wax technologies, demonstrating promising applicability for high-quality fruit storage and export. The utilization of this advanced produce wax coating technology offers considerable potential for bolstering food safety and providing enhanced protection against bacteria and fungi for produce commodities.

6.
Vascular ; : 17085381231217059, 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37978808

RESUMEN

BACKGROUND: We retrospectively evaluated early and intermediate outcomes of hybrid repair of complex thoracic aortic diseases involving an aberrant right subclavian artery. This paper aims to report features and available treatment options for this rare, hard-to-diagnose, and manage, aorta-related vascular condition. METHODS: Between January 2012 and May 2019, 13 patients (mean age, 60.1 ± 9.3 years; nine men) underwent complex thoracic aorta repair surgery. Six patients had a thoracic aortic aneurysm, two had type A aortic dissection, and five had complicated type B aortic dissection. Hybrid repair strategies included de-branching in combination with single-stage aortic arch replacement with the frozen elephant trunk technique performed in four patients, thoracic endovascular aortic repair in six patients, and 2-stage hybrid repair consisting of a total arch replacement with a conventional/frozen elephant trunk (first stage) and subsequent endovascular repair (second stage) in three patients. RESULTS: One early death occurred: a patient with acute type A aortic dissection, who underwent Bentall procedure and aortic arch replacement with the frozen elephant trunk technique, died in-hospital of multiorgan failure 41 days after the procedure. The remaining 12 patients were discharged in stable condition. The median follow-up duration was 36 months (2-71 months). Two late mortalities occurred: a patient with residual type A aortic dissection, who underwent arch replacement with the frozen elephant trunk technique, died of intracranial hemorrhage 3 months after the surgery. And 72 years old female patient died of acute exacerbation of chronic obstructive pulmonary disease 2 months after the surgery. CONCLUSION: Our study indicates that various hybrid strategies can be used to treat complex thoracic aortic diseases involving an aberrant right subclavian artery. The approach of choice depends on the features of disease pathology, the aortic segments involved, and the operating surgeon's experience.

7.
Adv Colloid Interface Sci ; 321: 103025, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37871381

RESUMEN

Stimuli responsive viscosity modifiers entail an important class of materials which allow for smart material formation utilizing various stimuli for switching such as pH, temperature, light and salinity. They have seen applications in the biomedical space including tissue engineering and drug delivery, wherein stimuli responsive hydrogels and polymeric vessels have been extensively applied. Applications have also been seen in other domains like the energy sector and automobile industry, in technologies such as enhanced oil recovery. The chemistry and microstructural arrangements of the aqueous morphologies of dissolved materials are usually sensitive to the aforementioned stimuli which subsequently results in rheological sensitivity as well. Herein, we overview different structures capable of viscosity modification as well as go over the rheological theory associated with classical systems studied in literature. A detailed analysis allows us to explore correlations between commonly discussed models such as molecular packing parameter, tube reptation and stress relaxation with structural and rheological changes. We then present five primary mechanisms corresponding to stimuli responsive viscosity modification: (i) packing parameter modification via functional group conditioning and (ii) via dynamic bond formation, (iii) mesh formation by interlinking of network nodes, (iv) viscosity modification by chain conformation changes and (v) viscosity modification by particle jamming. We also overview several recent examples from literature that employ the concepts discussed to create novel classes of intriguing stimuli responsive structures and their corresponding rheological properties. Furthermore, we also explore systems that are responsive to multiple stimuli which can provide enhanced functionality and versatility by providing multi-level and precise actuation. Such systems have been used for programmed site-specific drug delivery.

8.
Food Res Int ; 173(Pt 1): 113227, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803546

RESUMEN

Increasing concerns revolve around bacterial cross-contamination of leafy green vegetables via food-contact surfaces. Given that stainless-steel is among the commonly used food-contact surfaces, this study reports a coating strategy enhancing its hygiene and microbiological safety through an antifouling approach via superhydrophobicity. The developed method involves growing a nickel-nanodiamond nanocomposite film on 304 stainless-steel via electroplating and sequential functionalization of the outer surface layer with nonpolar organosilane molecules via polydopamine moieties. The resultant superhydrophobic stainless-steel surfaces had a static water contact angle of 156.3 ± 1.9° with only 2.3 ± 0.5° contact angle hysteresis. Application of the coating to stainless-steel was demonstrated to yield 2.3 ± 0.6 log10 and 2.0 ± 0.9 log10 reductions in the number of adherent gram-negative Escherichia coli O157:H7 and gram-positive Listeria innocua cells, respectively. These population reductions were shown to be statistically significant (α = 0.05). Coated stainless-steel also resisted fouling when contacted with contaminated romaine lettuce leaves and maintained significant non-wetting character when abraded with sand or contacted with high concentration surfactant solutions. The incorporation of superhydrophobic stainless-steel surfaces into food processing equipment used for washing and packaging leafy green vegetables has the potential to mitigate the transmission of pathogenic bacteria within food production facilities.


Asunto(s)
Escherichia coli O157 , Listeria , Acero Inoxidable , Microbiología de Alimentos , Bacterias , Interacciones Hidrofóbicas e Hidrofílicas
9.
Soft Matter ; 19(29): 5609-5621, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37449660

RESUMEN

Stimuli-responsive materials are increasingly needed for the development of smart electronic, mechanical, and biological devices and systems relying on switchable, tunable, and adaptable properties. Herein, we report a novel pH- and temperature-responsive binary supramolecular assembly involving a long-chain hydroxyamino amide (HAA) and an inorganic hydrotrope, boric acid, with highly tunable viscous and viscoelastic properties. The system under investigation demonstrates a high degree of control over its viscosity, with the capacity to achieve over four orders of magnitude of control through the concomitant manipulation of pH and temperature. In addition, the transformation from non-Maxwellian to Maxwellian fluid behavior could also be induced by changing the pH and temperature. Switchable rheological properties were ascribed to the morphological transformation between spherical vesicles, aggregated/fused spherical vesicles, and bicontinuous gyroid structures revealed by cryo-TEM studies. The observed transitions are attributed to the modulation of the head group spacing between HAA molecules under different pH conditions. Specifically, acidic conditions induce electrostatic repulsion between the protonated amino head groups, leading to an increased spacing. Conversely, under basic conditions, the HAA head group spacing is reduced due to the intercalation of tetrahydroxyborate, facilitated by hydrogen bonding.

10.
Langmuir ; 39(15): 5426-5439, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37014907

RESUMEN

Bacterial fouling is a persistent problem causing the deterioration and failure of functional surfaces for industrial equipment/components; numerous human, animal, and plant infections/diseases; and energy waste due to the inefficiencies at internal and external geometries of transport systems. This work gains new insights into the effect of surface roughness on bacterial fouling by systematically studying bacterial adhesion on model hydrophobic (methyl-terminated) surfaces with roughness scales spanning from ∼2 nm to ∼390 nm. Additionally, a surface energy integration framework is developed to elucidate the role of surface roughness on the energetics of bacteria and substrate interactions. For a given bacteria type and surface chemistry; the extent of bacterial fouling was found to demonstrate up to a 75-fold variation with surface roughness. For the cases showing hydrophobic wetting behavior, both increased effective surface area with increasing roughness and decreased activation energy with increased surface roughness was concluded to enhance the extent of bacterial adhesion. For the cases of superhydrophobic surfaces, the combination of factors including (i) the surpassing of Laplace pressure force of interstitial air over bacterial adhesive force, (ii) the reduced effective substrate area for bacteria wall due to air gaps to have direct/solid contact, and (iii) the reduction of attractive van der Waals force that holds adhering bacteria on the substrate were summarized to weaken the bacterial adhesion. Overall, this study is significant in the context of designing antifouling coatings and systems as well as explaining variations in bacterial contamination and biofilm formation processes on functional surfaces.


Asunto(s)
Adhesión Bacteriana , Nanoestructuras , Animales , Humanos , Adhesión Bacteriana/fisiología , Propiedades de Superficie , Humectabilidad , Interacciones Hidrofóbicas e Hidrofílicas
11.
Soft Matter ; 19(12): 2231-2240, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36912013

RESUMEN

Cyclodextrins are highly functional compounds with a hydrophobic cavity capable of forming supramolecular inclusion complexes with various classes of molecules including surfactants. The resultant rich nanostructures and their dynamics are an interesting research problem in the area of soft condensed matter and related applications. Herein, we report novel dynamical supramolecular assemblies based on the complexation of ß-cyclodextrin with 3 different sulfonic surfactants, which are sodium hexadecylsulfate, sodium dodecylbenzenesulfonate, and myristyl sulfobetaine. It was observed that a ß-cyclodextrin : surfactant/2 : 1 molar ratio was ideal for inducing axial growth and imparting large viscosities in the suspensions. Such complexation processes were accompanied by intriguing nanostructural phase behaviors and rheological properties that were very sensitive to the molecular architecture of sulfonic surfactants. The presence of an amino group in the head group of the surfactant allowed for large viscosities that reached 2.4 × 104 Pa s which exhibited gel-like behavior. In contrast, smaller viscosity values with a lower consistency index were observed when a bulky aromatic ring was present instead. DIC microscopy was used to visually probe the microstructure of the systems with respect to sulfonate molecular architecture. Additionally, surface tension measurements, and FTIR and NMR spectroscopies were used to gain insights into the nature of interactions that lead to the complexation and nanostructural characteristics. Finally, mechanics correlating the supramolecular morphologies to the rheological properties were proposed.

12.
Soft Matter ; 18(28): 5282-5292, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35789362

RESUMEN

Recent studies have shown that solvated amphiphiles can form nanostructured self-assemblies called dynamic binary complexes (DBCs) in the presence of ions. Since the nanostructures of DBCs are directly related to their viscoelastic properties, it is important to understand how the nanostructures change under different solution conditions. However, it is challenging to obtain a three-dimensional molecular description of these nanostructures by utilizing conventional experimental characterization techniques or thermodynamic models. To this end, we combined the structural data from small angle X-ray scattering (SAXS) experiments and thermodynamic knowledge from coarse-grained Monte Carlo (CGMC) simulations to identify the detailed three-dimensional nanostructure of DBCs. Specifically, unbiased CGMC simulations are performed with SAXS-guided initial conditions, which aids us to sample accurate nanostructures in a computationally efficient fashion. As a result, an elliptical bilayer nanostructure is obtained as the most probable nanostructure of DBCs whose dimensions are validated by scanning electron microscope (SEM) images. Then, utilizing the obtained molecular model of DBCs, we could also explain the pH tunability of the system. Overall, our results from SAXS-guided unbiased CGMC simulations highlight that using potential energy combined with SAXS data, we can distinguish otherwise degenerate nanostructures resulting from the inherent ambiguity of SAXS patterns.

13.
J Agric Food Chem ; 70(26): 7900-7910, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35727694

RESUMEN

Biopesticides have become a global trend in order to minimize the hazards derived from synthetic chemical pesticides and improve the safety, efficacy, and environmental friendliness of agricultural pest management. Herein, we report a novel biopesticide composite encapsulating azadirachtin with the size of 260.9 ± 6.8 nm and its effects on the insect pest Spodoptera frugiperda (fall armyworm). The nanocomposite biopesticide was produced via nano emulsification and freeze-drying process using whey protein isolate as a nanocarrier matrix to encapsulate azadirachtin, a natural insect-killing compound obtained from neem seed. We found that the nanocomposite biopesticide acted quicker and with greater efficacy than bulk azadirachtin treatment with corresponding LC50 values within 11 days of S. frugiperda larvae survival. Through confocal microscopy, we found the enhanced biodistribution of the nanocomposite to all parts of the insect body. Photodegradation assays revealed an enhanced UV stability facilitated by light-scattering stemming from the intrinsic nanostructure and UV scavenging vitamin-E component.


Asunto(s)
Agentes de Control Biológico , Animales , Larva , Limoninas , Spodoptera , Distribución Tisular , Proteína de Suero de Leche
14.
Turk Gogus Kalp Damar Cerrahisi Derg ; 30(1): 11-17, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35444858

RESUMEN

Background: The aim of this study was to compare postoperative outcomes of percutaneous access and femoral cutdown methods for elective bifurcated endovascular abdominal aortic aneurysm repair. Methods: Between November 2013 and September 2020, a total of 152 patient (135 males, 17 females; mean age: 70.6±6, range, 57 to 87 years) who underwent endovascular repair due to infrarenal abdominal aortic aneurysm were retrospectively analyzed. According to femoral access type, the patients were grouped into two groups as the total percutaneous femoral access and open cutdown femoral access endovascular repair. Intra- and postoperative data were compared, including operative time, amount of contrast media, bleeding requiring transfusion, return to the operating room, access vessel complications, wound complications, and overall length of hospital stay. Results: Eighty-seven (57.2%) femoral cutdown access repair and 65 (42.8%) percutaneous femoral access repair cases were evaluated in the study. The two groups were comparable in terms of demographic and clinical characteristics (p>0.05), except for chronic obstructive pulmonary disease which was more frequent in the percutaneous access group (p=0.014). After adjustment, age, diabetes mellitus, chronic obstructive pulmonary disease, and obesity were not predictive of percutaneous access failure. Percutaneous femoral access was observed as the only preventing factor for wound infection (odds ratio=0.166, 95% confidence interval: 0.036-0.756; p=0.021). Conclusion: Although femoral access preference does not affect mortality and re-intervention rates, percutaneous endovascular repair reduces operation time, hospital stay, and wound site complications compared to femoral artery exposures.

15.
Microorganisms ; 10(2)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35208902

RESUMEN

This study determined Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium survival on tomato skins as a function of sanitization treatment, under three differing contamination and sanitization scenarios. Sanitizing treatments consisted of the plant-derived antimicrobial (PDA) geraniol (0.5 wt.%) emulsified in the polymeric surfactant Pluronic F-127 (GNP), 0.5 wt.% unencapsulated geraniol (UG), 200 mg/L hypochlorous acid at pH 7.0 (HOCl), and a sterile distilled water wash (CON). Experimental contamination and sanitization scenarios tested were: (1) pathogen inoculation preceded by treatment; (2) the pathogen was inoculated onto samples twice with a sanitizing treatment applied in between inoculations; and (3) pathogen inoculation followed by sanitizing treatment. Reductions in counts of surviving pathogens were dependent on the sanitizing treatment, the storage period, or the interaction of these independent/main effects. GNP treatment yielded the greatest reductions in pathogen counts on tomato skins; pathogen survivor counts following GNP treatment were consistently statistically lower than those achieved by HOCl or UG treatments (p < 0.05). GNP treatment provided greatest pathogen reduction under differing conditions of pre- and/or post-harvest cross-contamination, and reduced hygiene-indicating microbes the most of all treatments on non-inoculated samples. Encapsulated geraniol can reduce the risk of pathogen transmission on tomato fruit, reducing food safety hazard risks for tomato consumers.

16.
Environ Monit Assess ; 193(12): 853, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34851426

RESUMEN

Orchids are under continuous threat from many factors, especially human-sourced. Estimating the emerging threat factors linked to habitat losses is very important to understand the effects on biodiversity and to design protection strategies and protected areas. Field assessments and modelling were performed with the aim of determining areas where orchids may spread and to reveal priority areas to create a protection plan. Additionally, the aim was to contribute to development of protection strategies for taxa under threat. This study was performed in the Black Sea region located in the north of Turkey. A total of 40 taxa belonging to 15 Orchidaceae genera were collected. The field assessment process used topographic parameters and threat factors. Habitats where orchids are most commonly distributed comprise open areas, meadows, pastures, and forests. Additionally, the density of orchids was determined to be highest at altitudes from 400 to 1600 m. The highest risk factors for taxa in the region include grazing and trampling. Based on these results, suitable habitats were modelled and mapped according to the observed habitat requirements. The determined suitable habitats will represent the preliminary targets for ex situ protection programs where required. The maps revealed here are important for labeling areas with an estimated orchid density and for protection of these areas if necessary. Our field observations were compatible with the obtained maps. Additionally, we consider these maps to be very important in terms of determining areas where taxa will be spread in preliminary field studies.


Asunto(s)
Monitoreo del Ambiente , Sistemas de Información Geográfica , Mar Negro , Ecosistema , Humanos , Turquía
17.
PLoS One ; 16(12): e0260786, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34855902

RESUMEN

Hydraulic fracturing of unconventional reservoirs has seen a boom in the last century, as a means to fulfill the growing energy demand in the world. The fracturing fluid used in the process plays a substantial role in determining the results. Hence, several research and development efforts have been geared towards developing more sustainable, efficient, and improved fracturing fluids. Herein, we present a dynamic binary complex (DBC) solution, with potential to be useful in the hydraulic fracturing domain. It has a supramolecular structure formed by the self-assembly of low molecular weight viscosifiers (LMWVs) oleic acid and diethylenetriamine into an elongated entangled network under alkaline conditions. With less than 2 wt% constituents dispersed in aqueous solution, a viscous gel that exhibits high viscosities even under shear was formed. Key features include responsiveness to pH and salinity, and a zero-shear viscosity that could be tuned by a factor of ~280 by changing the pH. Furthermore, its viscous properties were more pronounced in the presence of salt. Sand settling tests revealed its potential to hold up sand particles for extended periods of time. In conclusion, this DBC solution system has potential to be utilized as a smart salt-responsive, pH-switchable hydraulic fracturing fluid.


Asunto(s)
Industria Procesadora y de Extracción/métodos , Fracking Hidráulico/métodos , Gas Natural/análisis , Ácido Oléico/química , Poliaminas/química , Salinidad , Concentración de Iones de Hidrógeno , Yacimiento de Petróleo y Gas/química , Reología , Viscosidad
18.
J Colloid Interface Sci ; 600: 550-560, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34062344

RESUMEN

HYPOTHESIS: Wormlike micelles (WLMs) formed due to the self-assembly of amphiphiles in aqueous solution have similar viscoelastic properties as polymers. Owing to this similarity, in this work, it is postulated that kinetic Monte Carlo (kMC) sampling of slip-springs dynamics, which is able to model the rheology of polymers, can also be extended to capture the relaxation dynamics of WLMs. THEORY: The proposed modeling framework considers the following relaxation mechanisms: reptation, union-scission, and constraint release. Specifically, each of these relaxation mechanisms is simulated as separate kMC events that capture the relaxation dynamics while considering the living nature of WLMs within the slip-spring framework. As a case study, the model is implemented to a system of sodium oleate and sodium chloride to predict the linear rheology and the characteristic relaxation times associated with the individual relaxation mechanisms at different pH and salt concentrations. FINDINGS: Linear rheology predictions were found to be in good agreement with experimental data. Furthermore, the calculated relaxation times highlighted that reptation contributed to a continuous increase in viscosity while union-scission contributed to the decrease in viscosity of WLM solutions at a higher salinity and pH. This manifests the proposed model's capability to provide insights into the key processes governing WLM's rheology.


Asunto(s)
Micelas , Tensoactivos , Algoritmos , Reología , Viscosidad
19.
Microsc Res Tech ; 84(10): 2409-2420, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33908120

RESUMEN

Orchid seeds have great morphological variations that imply the phylogenetic relationship of the species depending on the biodiversity of the family or act as an adaptation to seed dispersal mechanisms depending on the life form. This study aims to both describe and analyse the qualitative and quantitative traits of 12 Turkish orchids representing epidendroids and orchidoids in detail to investigate which properties are diagnostic among these taxa and also reveal if seed properties are differentiated in relationship to the ecological preferences of the studied species. Both qualitative and quantitative features were determined, and measurements were obtained using light and scanning electron microscopy. We applied the unweighted pair group method with arithmetic mean (UPGMA) cluster analysis and canonical discriminant analysis to the qualitative and quantitative traits. Furthermore, we analyzed the same orchid seed in correlation with ecological traits such as habitats and the elevation preferences of species. This study confirmed the usefulness of both data sets for effectively assessing the variation of orchid seeds. Although the seed characters such as the cell shape differences in the chalazal or medial region, seed sizes, cell numbers on the longitudinal axis, and periclinal wall ornamentation are taxonomically conserved, some other characteristics such as seed shape, the absence of periclinal wall ornamentation, and larger embryo size imply ecological adaptation or developmental achievement for germination. This study confirms the diagnostic value of both qualitative and quantitative seed features, which are effective in explaining the orchid seed variety.


Asunto(s)
Orchidaceae , Ecosistema , Germinación , Filogenia , Semillas
20.
Nanomaterials (Basel) ; 11(1)2021 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-33401616

RESUMEN

Herein, we describe interfacially-assembled [7]helicene films that were deposited on graphene monolayer using the Langmuir-Schaefer deposition by utilizing the interactions of nonplanar (helicene) and planar (graphene) π-π interactions as functional antifouling coatings. Bacterial adhesion of Staphylococcus aureus on helicene-graphene films was noticeably lower than that on bare graphene, up to 96.8% reductions in bacterial adhesion. The promising bacterial antifouling characteristics of helicene films was attributed to the unique molecular geometry of helicene, i.e., nano-helix, which can hinder the nanoscale bacterial docking processes on a surface. We envision that helicene-graphene films may eventually be used as protective coatings against bacterial antifouling on the electronic components of clinical and biomedical devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA