Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Biochem Pharmacol ; 224: 116238, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677442

RESUMEN

INSL5 and relaxin-3 are relaxin family peptides with important roles in gut and brain function, respectively. They mediate their actions through the class A GPCRs RXFP4 and RXFP3. RXFP4 has been proposed to be a therapeutic target for colon motility disorders whereas RXFP3 targeting could be effective for neurological conditions such as anxiety. Validation of these targets has been limited by the lack of specific ligands and the availability of robust ligand-binding assays for their development. In this study, we have utilized NanoBiT complementation to develop a SmBiT-conjugated tracer for use with LgBiT-fused RXFP3 and RXFP4. The low affinity between LgBiT:SmBiT should result in a low non-specific luminescence signal and enable the quantification of binding without the tedious separation of non-bound ligands. We used solid-phase peptide synthesis to produce a SmBiT-labelled RXFP3/4 agonist, R3/I5, where SmBiT was conjugated to the B-chain N-terminus via a PEG12 linker. Both SmBiT-R3/I5 and R3/I5 were synthesized and purified in high purity and yield. Stable HEK293T cell lines expressing LgBiT-RXFP3 and LgBiT-RXFP4 were produced and demonstrated normal signaling in response to the synthetic R3/I5 peptide. Binding was first characterized in whole-cell binding kinetic assays validating that the SmBiT-R3/I5 bound to both cell lines with nanomolar affinity with minimal non-specific binding without bound and free SmBiT-R3/I5 separation. We then optimized membrane binding assays, demonstrating easy and robust analysis of both saturation and competition binding from frozen membranes. These assays therefore provide an appropriate rigorous binding assay for the high-throughput analysis of RXFP3 and RXFP4 ligands.


Asunto(s)
Proteínas , Receptores Acoplados a Proteínas G , Receptores de Péptidos , Relaxina , Relaxina/metabolismo , Relaxina/química , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Ligandos , Células HEK293 , Receptores de Péptidos/metabolismo , Receptores de Péptidos/genética , Proteínas/metabolismo , Proteínas/química , Insulina/metabolismo , Unión Proteica/fisiología , Péptidos/metabolismo , Péptidos/química , Péptidos/farmacología , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Secuencia de Aminoácidos
2.
Proc Natl Acad Sci U S A ; 111(30): 11133-8, 2014 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-25028498

RESUMEN

The gut endocrine system is emerging as a central player in the control of appetite and glucose homeostasis, and as a rich source of peptides with therapeutic potential in the field of diabetes and obesity. In this study we have explored the physiology of insulin-like peptide 5 (Insl5), which we identified as a product of colonic enteroendocrine L-cells, better known for their secretion of glucagon-like peptide-1 and peptideYY. i.p. Insl5 increased food intake in wild-type mice but not mice lacking the cognate receptor Rxfp4. Plasma Insl5 levels were elevated by fasting or prolonged calorie restriction, and declined with feeding. We conclude that Insl5 is an orexigenic hormone released from colonic L-cells, which promotes appetite during conditions of energy deprivation.


Asunto(s)
Colon/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Células Enteroendocrinas/metabolismo , Hormonas Peptídicas/metabolismo , Hormonas Peptídicas/farmacología , Animales , Femenino , Péptido 1 Similar al Glucagón/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Péptido YY/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo
3.
Chembiochem ; 9(11): 1816-22, 2008 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-18576448

RESUMEN

Insulin-like peptide 5 (INSL5) was first identified through searches of the expressed sequence tags (EST) databases. Primary sequence analysis showed it to be a prepropeptide that was predicted to be processed in vivo to yield a two-chain sequence (A and B) that contained the insulin-like disulfide cross-links. The high affinity interaction between INSL5 and the receptor RXFP4 (GPCR142) coupled with their apparent coevolution and partially overlapping tissue expression patterns strongly suggest that INSL5 is an endogenous ligand for RXFP4. Given that the primary function of the INSL5-RXFP4 pair remains unknown, an effective means of producing sufficient quantities of this peptide and its analogues is needed to systematically investigate its structural and biological properties. A combination of solid-phase peptide synthesis methods together with regioselective disulfide bond formation were used to obtain INSL5. Both chains were unusually resistant to standard synthesis protocols and required highly optimized conditions for their acquisition. In particular, the use of a strong tertiary amidine, DBU, as N(alpha)-deprotection base was required for the successful assembly of the B chain; this highlights the need to consider incomplete deprotection rather than acylation as a cause of failed synthesis. Following sequential disulfide bond formation and chain combination, the resulting synthetic INSL5, which was obtained in good overall yield, was shown to possess a similar secondary structure to human relaxin-3 (H3 relaxin). The peptide was able to inhibit cAMP activity in SK-N-MC cells that expressed the human RXFP4 receptor with a similar activity to H3 relaxin. In contrast, it had no activity on the human RXFP3 receptor. Synthetic INSL5 demonstrates equivalent activity to the recombinant-derived peptide, and will be an important tool for the determination of its biological function.


Asunto(s)
Insulina/síntesis química , Insulina/metabolismo , Proteínas/síntesis química , Proteínas/metabolismo , Humanos , Insulina/química , Conformación Proteica , Proteínas/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA