Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
Sci Rep ; 14(1): 10503, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714844

RESUMEN

Diesel exhaust particles (DEPs) are very small (typically < 0.2 µm) fragments that have become major air pollutants. DEPs are comprised of a carbonaceous core surrounded by organic compounds such as polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs. Inhaled DEPs reach the deepest sites in the respiratory system where they could induce respiratory/cardiovascular dysfunction. Additionally, a previous study has revealed that a portion of inhaled DEPs often activate immune cells and subsequently induce somatic inflammation. Moreover, DEPs are known to localize in lymph nodes. Therefore, in this study we explored the effect of DEPs on the lymphatic endothelial cells (LECs) that are a constituent of the walls of lymph nodes. DEP exposure induced cell death in a reactive oxygen species (ROS)-dependent manner. Following exposure to DEPs, next-generation sequence (NGS) analysis identified an upregulation of the integrated stress response (ISR) pathway and cell death cascades. Both the soluble and insoluble components of DEPs generated intracellular ROS. Three-dimensional Raman imaging revealed that DEPs are taken up by LECs, which suggests internalized DEP cores produce ROS, as well as soluble DEP components. However, significant cell death pathways such as apoptosis, necroptosis, ferroptosis, pyroptosis, and parthanatos seem unlikely to be involved in DEP-induced cell death in LECs. This study clarifies how DEPs invading the body might affect the lymphatic system through the induction of cell death in LECs.


Asunto(s)
Células Endoteliales , Especies Reactivas de Oxígeno , Emisiones de Vehículos , Emisiones de Vehículos/toxicidad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Humanos , Material Particulado/toxicidad , Apoptosis/efectos de los fármacos , Contaminantes Atmosféricos/toxicidad , Muerte Celular/efectos de los fármacos
2.
Biol Pharm Bull ; 47(3): 698-707, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38538323

RESUMEN

RNA vaccines based on Lipid nanoparticles (LNP) were put into practical use within only one year after the global outbreak of the coronavirus disease 2019 (COVID-19). This success of RNA vaccine highlights the utility of an mRNA delivery system as a vaccination strategy. Potent immunostimulatory activity of LNPs (i.e., inflammation occurring at the injection site and the production of inflammatory cytokines) have recently been reported. However, we have only limited knowledge concerning which cells are responsible for responding to the LNPs. We report herein on in vitro chemokine production from non-immune cells in response to exposure to LNPs. In this study, SM-102, an ionizable lipid that is used in the approved RNA vaccine for the clinical usage of COVID-19 mRNA vaccine, was used. Immortalized mouse lymphatic endothelial cells (mLECs) or professional antigen presenting cells (APCs) such as RAW 264.7 monocyte/macrophage cells were incubated with LNPs that contained no mRNA. As a result, chemokines involved in the recruitment of monocytes/neutrophils were produced only by the mLECs following the LNP treatment. These findings indicate that LEC appear to serve as the cell that sends out initial signals to response LNPs.


Asunto(s)
COVID-19 , Liposomas , Nanopartículas , Animales , Humanos , Ratones , Vacunas de ARNm , Vacunas contra la COVID-19 , Células Endoteliales , Quimiocinas , ARN Mensajero , ARN Interferente Pequeño
3.
Pharmaceutics ; 16(2)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38399242

RESUMEN

RNA vaccines are applicable to the treatment of various infectious diseases via the inducement of robust immune responses against target antigens by expressing antigen proteins in the human body. The delivery of messenger RNA by lipid nanoparticles (LNPs) has become a versatile drug delivery system used in the administration of RNA vaccines. LNPs are widely considered to possess adjuvant activity that induces a strong immune response. However, the properties of LNPs that contribute to their adjuvant activity continue to require clarification. To characterize the relationships between the lipid composition, particle morphology, and adjuvant activity of LNPs, the nanostructures of LNPs and their antibody production were evaluated. To simply compare the adjuvant activity of LNPs, empty LNPs were subcutaneously injected with recombinant proteins. Consistent with previous research, the presence of ionizable lipids was one of the determinant factors. Adjuvant activity was induced when a tiny cholesterol assembly (cholesterol-induced phase, ChiP) was formed according to the amount of cholesterol present. Moreover, adjuvant activity was diminished when the content of cholesterol was excessive. Thus, it is plausible that an intermediate structure of cholesterol (not in a crystalline-like state) in an intra-particle space could be closely related to the immunogenicity of LNPs.

4.
J Clin Invest ; 133(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38038133

RESUMEN

Intranasal vaccines are anticipated to be powerful tools for combating many infectious diseases, including SARS-CoV-2, because they induce not only systemic immunity but also mucosal immunity at the site of initial infection. However, they are generally inefficient in inducing an antigen-specific immune response without adjuvants. Here, we developed an adjuvant-free intranasal vaccine platform that utilizes the preexisting immunity induced by previous infection or vaccination to enhance vaccine effectiveness. We made RBD-HA, a fusion of the receptor-binding domain (RBD) of spike derived from SARS-CoV-2 as a vaccine target with HA derived from influenza A virus (IAV) as a carrier protein. Intranasal immunization of previously IAV-infected mice with RBD-HA without an adjuvant elicited robust production of RBD-specific systemic IgG and mucosal IgA by utilizing both HA-specific preexisting IgG and CD4+ T cells. Consequently, the mice were efficiently protected from SARS-CoV-2 infection. Additionally, we demonstrated the high versatility of this intranasal vaccine platform by assessing various vaccine antigens and preexisting immunity associated with a variety of infectious diseases. The results of this study suggest the promising potential of this intranasal vaccine platform to address problems associated with intranasal vaccines.


Asunto(s)
Enfermedades Transmisibles , Virus de la Influenza A , Vacunas contra la Influenza , Animales , Ratones , Hemaglutininas , Anticuerpos Antivirales , Inmunización , Vacunación , Adyuvantes Inmunológicos/farmacología , Inmunidad Mucosa , Virus de la Influenza A/genética , Inmunoglobulina G
5.
Pharmaceutics ; 15(12)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38140043

RESUMEN

Because of its efficient and robust gene transfer capability, messenger RNA (mRNA) has become a promising tool in various research fields. The lipid nanoparticle (LNP) is considered to be a fundamental technology for an mRNA delivery system and has been used extensively for the development of RNA vaccines against SARS-CoV-2. We recently developed ssPalm, an environmentally responsive lipid-like material, as a component of LNP for mRNA delivery. In this study, a self-degradable unit (phenyl ester) that confers high transfection activity and an immune stimulating unit (vitamin E scaffold) for high immune activation were combined to design a material, namely, ssPalmE-Phe-P4C2, for vaccine use. To design a simple and user-friendly form of an RNA vaccine based on this material, a freeze-drying-based preparation method for producing a ready-to-use-type LNP (LNP(RtoU)) was used to prepare the LNPssPalmE-Phe. The optimization of the preparation method and the lipid composition of the LNPssPalmE-Phe(RtoU) revealed that dioleoyl-sn-glycero phosphatidylethanolamine (DOPE) was a suitable helper lipid for achieving a high vaccination activity of the LNPssPalmE-Phe(RtoU). Other findings indicated that to maintain particle properties and vaccination activity, a 40% cholesterol content was necessary. A single administration of the LNPssPalmE-Phe(RtoU) that contained mRNA-encoding Ovalbumin (mOVA-LNPssPalmE-Phe(RtoU)) demonstrated a significant suppression of tumor progression in a tumor-bearing mouse OVA-expressing cell line (E.G7-OVA). In summary, the LNPssPalmE-Phe(RtoU) is an easy-to-handle drug delivery system (DDS) for delivering mRNA antigens in immunotherapy.

6.
ACS Nano ; 17(19): 18758-18774, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37814788

RESUMEN

RNA vaccines based on lipid nanoparticles (LNPs) with in vitro transcribed mRNA (IVT-mRNA) encapsulated are now a currently successful but still evolving modality of vaccines. One of the advantages of RNA vaccines is their ability to induce CD8+ T-cell-mediated cellular immunity that is indispensable for excluding pathogen-infected cells or cancer cells from the body. In this study, we report on the development of LNPs with an enhanced capability for inducing cellular immunity by using an ionizable lipid with a vitamin E scaffold. An RNA vaccine that contained this ionizable lipid and an IVT-mRNA encoding a model antigen ovalbumin (OVA) induced OVA-specific cytotoxic T cell responses and showed an antitumor effect against an E.G7-OVA tumor model. Vaccination with the LNPs conferred protection against lethal infection by Toxoplasma gondii using its antigen TgPF. The vitamin E scaffold-dependent type I interferon response was important for effector CD8+ T cell differentiation induced by the mRNA-LNPs. Our findings also revealed that conventional dendritic cells (cDCs) were essential for achieving CD8+ T cell responses induced by the mRNA-LNPs, while the XCR1-positive subset of cDCs, cDC1 specialized for antigen cross-presentation, was not required. Consistently, the mRNA-LNPs were found to selectively transfect another subset of cDCs, cDC2 that had migrated from the skin to lymph nodes, where they could make vaccine-antigen-dependent contacts with CD8+ T cells. The findings indicate that the activation of innate immune signaling by the adjuvant activity of the vitamin E scaffold and the expression of antigens in cDC2 are important for subsequent antigen presentation and the establishment of antigen-specific immune responses.


Asunto(s)
Nanopartículas , Linfocitos T Citotóxicos , Animales , Ratones , Linfocitos T CD8-positivos , Vitamina E/farmacología , Vacunas Sintéticas , Vacunas de ARNm , Antígenos , Ovalbúmina , ARN Mensajero/genética , Lípidos/farmacología , Ratones Endogámicos C57BL , Células Dendríticas
7.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37762602

RESUMEN

Knockout mice are useful tools that can provide information about the normal function of genes, including their biochemical, developmental, and physiological roles. One problem associated with the generation of knockout mice is that the loss of some genes of interest produces a lethal phenotype. Therefore, the use of conditioned knockout mice, in which genes are disrupted in specific organs, is essential for the elucidation of disease pathogenesis and the verification of drug targets. In general, conditional knockout mice are produced using the Cre/loxP system; however, the production of the large numbers of Cre/flox knockout and control mice required for analysis requires substantial time and effort. Here, we describe the generation of liver-specific conditional knockout mice via the introduction of lipid nanoparticles encapsulating Cre mRNA into the liver of floxed mice. This technique does not require the production of offspring by mating floxed mice and is therefore more convenient than the conventional method. The results presented here demonstrate that the LNP-based method enables liver-specific gene knockout in a short period of time.

8.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37765078

RESUMEN

Multiple sclerosis is a disease caused by autoantigen-responsive immune cells that disrupt the myelin in the central nervous system (CNS). Although immunosuppressive drugs are used to suppress symptoms, no definitive therapy exists. As in the experimental autoimmune encephalitis (EAE) model of multiple sclerosis, a partial sequence of the myelin oligodendrocyte glycoprotein (MOG35-55) was identified as a causative autoantigen. This suggests that the induction of immune tolerance that is specific to MOG35-55 would be a fundamental treatment for EAE. We previously reported that lipid nanoparticles (LNPs) containing an anionic phospholipid, phosphatidylserine (PS), in their lipid composition, can be used to deliver mRNA and that this leads to proteins of interest to be expressed in the spleen. In addition to the targeting capability of PS, PS molecules avoid activating the immune system. Physiologically, the recognition of PS on apoptotic cells suppresses immune activation against these cells by releasing cytokines, such as interleukin-10 (IL-10) and transforming growth factor (TGF)-ß that negatively regulate immunity. In this study, we tested whether mRNA delivery of autoantigens to the spleen by PS-LNPs causes the expression of MOG35-55 antigens with minimal immune stimulation and whether this could be used to treat an EAE model by inducing immune tolerance.

9.
Pharmaceutics ; 15(9)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37765260

RESUMEN

The growing significance of messenger RNA (mRNA) therapeutics in diverse medical applications, such as cancer, infectious diseases, and genetic disorders, highlighted the need for efficient and safe delivery systems. Lipid nanoparticles (LNPs) have shown great promise for mRNA delivery, but challenges such as toxicity and immunogenicity still remain to be addressed. In this study, we aimed to compare the performance of polyplex nanomicelles, our original cationic polymer-based carrier, and LNPs in various aspects, including delivery efficiency, organ toxicity, muscle damage, immune reaction, and pain. Our results showed that nanomicelles (PEG-PAsp(DET)) and LNPs (SM-102) exhibited distinct characteristics, with the former demonstrating relatively sustained protein production and reduced inflammation, making them suitable for therapeutic purposes. On the other hand, LNPs displayed desirable properties for vaccines, such as rapid mRNA expression and potent immune response. Taken together, these results suggest the different potentials of nanomicelles and LNPs, supporting further optimization of mRNA delivery systems tailored for specific purposes.

10.
Front Immunol ; 14: 1224634, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37720231

RESUMEN

Introduction: Vaccinations are ideal for reducing the severity of clinical manifestations and secondary complications of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, SARS-CoV-2 continues to cause morbidity and mortality worldwide. In contrast to parenteral vaccines such as messenger RNA vaccines, nasal vaccines are expected to be more effective in preventing viral infections in the upper respiratory tract, the primary locus for viral infection and transmission. In this study, we examined the prospects of an inactivated whole-virion (WV) vaccine administered intranasally against SARS-CoV-2. Methods: Mice were immunized subcutaneously (subcutaneous vaccine) or intranasally (nasal vaccine) with the inactivated WV of SARS-CoV-2 as the antigen. Results: The spike protein (S)-specific IgA level was found to be higher upon nasal vaccination than after subcutaneous vaccination. The level of S-specific IgG in the serum was also increased by the nasal vaccine, although it was lower than that induced by the subcutaneous vaccine. The nasal vaccine exhibited a stronger defense against viral invasion in the upper respiratory tract than the subcutaneous vaccine and unimmunized control; however, both subcutaneous and nasal vaccines provided protection in the lower respiratory tract. Furthermore, we found that intranasally administered inactivated WV elicited robust production of S-specific IgA in the nasal mucosa and IgG in the blood of mice previously vaccinated with messenger RNA encoding the S protein. Discussion: Overall, these results suggest that a nasal vaccine containing inactivated WV can be a highly effective means of protection against SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Vacunas , Animales , Ratones , SARS-CoV-2 , Inmunidad Mucosa , COVID-19/prevención & control , Mucosa Nasal , Inmunoglobulina A , Inmunoglobulina G
11.
Pharmaceutics ; 15(7)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37514007

RESUMEN

The lipid nanoparticle (LNP) is one of the promising nanotechnologies for the delivery of RNA molecules, such as small interfering RNA (siRNA) and messenger RNA (mRNA). A series of LNPs that contain an mRNA encoding the antigen protein of SARS-CoV-2 were already approved as RNA vaccines against this infectious disease. Since LNP formulations are generally metastable, their physicochemical properties are expected to shift toward a more stable state during the long-time storage of suspensions. The current mRNA vaccines are supplied in the form of frozen formulations with a cryoprotectant for preventing deterioration. They must be stored in a freezer at temperatures from -80 °C to -15 °C. It is thought that therapeutic applications of this mRNA-LNP technology could be accelerated if a new formulation that permits mRNA-LNPs to be stored under milder conditions were available. We previously reported on a one-pot method for producing siRNA-encapsulated LNPs by combining freeze-drying technology with the conventional alcohol dilution method (referred to herein as the "alcohol dilution-lyophilization method"). In this study, this method was applied to the preparation of mRNA-LNPs to provide a freeze-dried formulation of mRNA LNPs. The resulting formulation can be stored at 4 °C for at least 4 months.

12.
J Control Release ; 361: 77-86, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37517544

RESUMEN

Small extracellular vesicles (sEVs) are small, cell-derived particles with sizes of approximately 100 nm. Since these particles include cargos such as host cell-derived proteins, messenger RNAs, and micro RNAs, they serve as mediators of cell-cell communication. While the analysis of the pharmacokinetic of sEVs after the intravenous injection have been reported, the lymphatic transport of sEVs remains unclear. The objective of this study was to provide insights into the intra-lymphatic trafficking and distribution of sEVs when they are injected into an interstitial space both in normal skin tissue and in cancerous tissue. When sEVs were Subcutaneously administered into the tail base and the tumor tissue, they preferably accumulated in the lymph nodes (LNs), rather than in the liver and the spleen. The findings reported herein show that the lymphatic transport of sEVs was drastically changed in model mice, in which a surgical treatment was used to modify to allow the dominant lymphatic flow from the footpad directly to the axillary LN via the inguinal LN. Based on the results, we conclude that when sEVs are injected into the subcutis space, they are preferably delivered to the LN via the lymphatic system. Further, the extent of accumulation of sEVs in the LN after subcutaneous injection was reduced when they were preliminarily incubated with Proteinase K. These results suggest that the lymphatic drainage of sEVs in normal skin tissue is regulated by membrane proteins on their surface. This reduction, however, was not observed in the case of cancer tissue. This discrepancy can be attributed to the presence of highly permeable lymphatic vessels in the tumor tissue. Further, the major cell subtypes that captured sEVs in the LN were LN-resident medullary sinus macrophages. These collective findings indicate that the lymphatic drainage of sEVs are mediated by proteins and, that they may appear to contribute to the control of the function of immune-responsive cells in the LNs.


Asunto(s)
Vesículas Extracelulares , Vasos Linfáticos , Ratones , Animales , Ganglios Linfáticos/metabolismo , Vasos Linfáticos/metabolismo , Piel , Inyecciones Subcutáneas
13.
Surg Case Rep ; 9(1): 53, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37027101

RESUMEN

BACKGROUND: Retiform hemangioendothelioma (RH) is a rare, intermediate-grade vascular tumor that often arises in the trunk and extremities. The clinical and radiological features of RH remain largely unknown. CASE PRESENTATION: A male patient in his 70s presented with shortness of breath on exertion, and computed tomography incidentally revealed a tumor in his right breast. Positron emission tomography (PET) revealed moderate 18F-fluorodeoxyglucose (FDG) uptake in the tumor. RH was observed in the resected specimens. Three months after surgery, the patient was free of local recurrence and distant metastasis. CONCLUSIONS: RH was found in the male breast and was accompanied by FDG uptake on PET. PET may be useful in diagnosing RH. Although metastasis is rare in RH, local recurrence may occur, and careful follow-up is required.

14.
Small ; 19(16): e2205131, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36703512

RESUMEN

The reactivation of anticancer immunity is a fundamental principle in cancer immunotherapy as evidenced by the use of immune checkpoint inhibitors (ICIs). While treatment with the ICIs is shown to have remarkable and durable therapeutic effects in the responders, the low objective response rate (<40%) continues to be a major problem. Since myeloid-derived suppressor cells (MDSCs), heterogenous cells with strong immunosuppressive activity that originate in the hematopoietic system, suppress the anticancer immunity via parallel immune checkpoint-dependent and independent pathways, these cells are potential targets for improving the efficacy of cancer immunotherapy. In this study, it is demonstrated that MDSCs can be depleted by delivering synthetic glucocorticoid dexamethasone to phagocytic cells in the spleen using a lipid nanoparticle. Since the interaction of nanoparticles with T cells is intrinsically poor, this strategy also enables the "detargeting" from T cells, thus avoiding the nonspecific suppression of cytotoxic immune responses against cancer cells. In addition to the direct anticancer effect of the nanoparticulated dexamethasone, their synergistic anticancer effect with ICIs is also reported.


Asunto(s)
Antineoplásicos , Células Supresoras de Origen Mieloide , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Células Supresoras de Origen Mieloide/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Inmunoterapia , Microambiente Tumoral , Dexametasona/farmacología
15.
ACS Nano ; 17(3): 2588-2601, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36719091

RESUMEN

Based on the clinical success of an in vitro transcribed mRNA (IVT-mRNA) that is encapsulated in lipid nanoparticles (mRNA-LNPs), there is a growing demand by researchers to test whether their own biological findings might be applicable for use in mRNA-based therapeutics. However, the equipment and/or know-how required for manufacturing such nanoparticles is often inaccessible. To encourage more innovation in mRNA therapeutics, a simple method for preparing mRNA-LNPs is prerequisite. In this study, we report on a method for encapsulating IVT-mRNA into LNPs by rehydrating a Ready-to-Use empty freeze-dried LNP (LNPs(RtoU)) formulation with IVT-mRNA solution followed by heating. The resulting mRNA-LNPs(RtoU) had a similar intraparticle structure compared to the mRNA-LNPs prepared by conventional microfluidic mixing. In vivo genome editing, a promising application of these types of mRNA-LNPs, was accomplished using the LNPs(RtoU) containing co-encapsulated Cas9-mRNA and a small guide RNA.


Asunto(s)
Liposomas , Nanopartículas , ARN Mensajero/genética , ARN Mensajero/química , Nanopartículas/química , Microfluídica , ARN Interferente Pequeño/genética
16.
Adv Healthc Mater ; 12(9): e2202528, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36535635

RESUMEN

Lipid nanoparticles (LNPs) are one of the most successful technologies in messenger RNA (mRNA) delivery. While the liver is the most frequent target for LNP delivery of mRNA, technologies for delivering mRNA molecules to extrahepatic tissues are also important. Herein, it is reported on the development of an LNP that targets secondary lymphoid tissues. New types of alcohol-soluble phosphatidylserine (PS) derivatives are designed as materials that target immune cells and then incorporated into LNPs using a microfluidic technique with a high degree of scalability and reproducibility. The resulting LNP that contained the synthesized PS delivered mRNA to the spleen much more efficiently compared to a control LNP. A sub-organ analysis revealed that the PS-loaded LNP is extensively taken up by tissue-resident macrophages in the red pulp and the marginal zone of the spleen. Thus, the PS-loaded LNP reported in this study will be a promising strategy for clinical applications that involve delivering mRNA to the spleen.


Asunto(s)
Nanopartículas , Fosfatidilserinas , ARN Mensajero/genética , Reproducibilidad de los Resultados , Liposomas , Tejido Linfoide , ARN Interferente Pequeño
17.
J Control Release ; 353: 125-133, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36414194

RESUMEN

Systemically administered lipid nanoparticles (LNPs) are complexed with Apolipoprotein E (ApoE) in the bloodstream, and the complex is subsequently largely taken up by hepatocytes. Based on a previous report showing that, like blood, lymph fluid also contains ApoE, and that LECs, in turn, expresses a low density-lipoprotein receptor (LDLR), which is the receptor responsible for the ApoE-bound LNP, we hypothesized that subcutaneously administered LNPs would be taken up by LECs via an ApoE-LDLR pathway. Our in vitro studies using immortal LECs that we established in a previous study showed that LEC indeed took up LNPs in an ApoE-dependent manner. We then reported on the development of LNPs that target the lymphatic endothelium for in vivo siRNA delivery after subcutaneous administration. The key to success for in vivo LEC targeting is that the surface needs to be modified with a high density of polyethylene glycol (PEG)-conjugated lipids with short acyl chains (C14). The LNPs were drained into the lymphatic system, and then accumulated in lymphatic endothelial cells in an ApoE-dependent manner, most likely after the release of the PEG-lipid. Subcutaneous administration of optimized LNPs containing encapsulated siRNA against VEGFR3, a marker of LECs, significantly inhibited the expression of VEGFR3. These findings are the first report of a simple straightforward strategy for targeting lymphatic endothelial cells by using ionizable lipid-formulated LNPs.


Asunto(s)
Células Endoteliales , Nanopartículas , ARN Interferente Pequeño/metabolismo , Células Endoteliales/metabolismo , Apolipoproteínas E/metabolismo , Lípidos , Polietilenglicoles/metabolismo
18.
J Immunother Cancer ; 10(12)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36543377

RESUMEN

BACKGROUND: With the increased use of immune checkpoint inhibitors (ICIs), side effects and toxicity are a great concern. Anaphylaxis has been identified as a potential adverse event induced by ICIs. Anaphylaxis is a life-threatening medical emergency. However, the mechanisms and factors that can potentially influence the incidence and severity of anaphylaxis in patients with cancer remain unclear. METHODS: Healthy, murine colon 26, CT26, breast 4T1, EMT6, and renal RENCA tumor-bearing mice were treated with an anti-PD-L1 antibody (clone 10F.9G2). Symptoms of anaphylaxis were evaluated along with body temperature and mortality. The amounts of antidrug antibody and platelet-activating factor (PAF) in the blood were quantified via ELISA and liquid chromatography-mass spectrometry (LC-MS/MS). Immune cells were analyzed and isolated using a flow cytometer and magnetic-activated cell sorting, respectively. RESULTS: Repeated administration of the anti-PD-L1 antibody 10F.9G2 to tumor-bearing mice caused fatal anaphylaxis, depending on the type of tumor model. After administration, antidrug immunoglobulin G (IgG), but not IgE antibodies, were produced, and PAF was released as a chemical mediator during anaphylaxis, indicating that anaphylaxis was caused by an IgG-dependent pathway. Anaphylaxis induced by 10F.9G2 was treated with a PAF receptor antagonist. We identified that neutrophils and macrophages were PAF-producing effector cells during anaphylaxis, and the tumor-bearing models with increased numbers of neutrophils and macrophages showed lethal anaphylaxis after treatment with 10F.9G2. Depletion of both neutrophils and macrophages using clodronate liposomes prevented anaphylaxis in tumor-bearing mice. CONCLUSIONS: Thus, increased numbers of neutrophils and macrophages associated with cancer progression may be risk factors for anaphylaxis. These findings may provide useful insights into the mechanism of anaphylaxis following the administration of immune checkpoint inhibitors in human subjects.


Asunto(s)
Anafilaxia , Neoplasias , Ratones , Humanos , Animales , Inmunoglobulina G , Anafilaxia/inducido químicamente , Anafilaxia/patología , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Neutrófilos/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Macrófagos , Factor de Activación Plaquetaria/efectos adversos , Factor de Activación Plaquetaria/metabolismo , Neoplasias/metabolismo
19.
Drug Metab Pharmacokinet ; 47: 100467, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36223709

RESUMEN

Benzbromarone, a uricosuric drug, has the potential to cause serious hepatotoxicity. Several studies have shown the formation of reactive metabolites of benzbromarone and their association with hepatotoxicity in mice. However, it is unknown whether those reactive metabolites are generated in humans in vivo. In the present study, we firstly investigated the pharmacokinetic profiles of benzbromarone in chimeric TK-NOG mice transplanted with human hepatocytes (humanized-liver mice) and then investigated whether reactive metabolites could be generated. The area under the plasma concentration-time curve ratio of benzbromarone and its major metabolites (benzbromarone: 1'-hydroxy benzbromarone: 6-hydroxy benzbromarone) in humanized-liver mice was 1: 1.2: 0.7, which was similar to that reported in humans. In addition, glutathione conjugates and their further metabolites derived from the epoxidation of the benzofuran ring and 1',6-dihydroxylation of benzbromarone were detected in the livers, urine and plasma. Furthermore, their peak intensities in mass spectrometry showed markedly higher levels compared with those of TK-NOG mice. These results suggested that the metabolic profiles of benzbromarone in humanized-liver mice were similar to those in humans and that the reactive metabolites detected in humanized-liver mice could be generated and are associated with the benzbromarone-induced hepatotoxicity in humans.


Asunto(s)
Benzbromarona , Enfermedad Hepática Inducida por Sustancias y Drogas , Ratones , Humanos , Animales , Benzbromarona/metabolismo , Hígado/metabolismo , Hepatocitos/metabolismo , Microsomas Hepáticos/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
20.
J Control Release ; 352: 328-337, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36280153

RESUMEN

Chemotherapy for peritoneal dissemination is poorly effective owing to limited drug transfer from the blood to the intraperitoneal (i.p.) compartment after intravenous (i.v.) administration. i.p. chemotherapy has been investigated to improve drug delivery to tumors; however, the efficacy continues to be debated. As anticancer drugs have low molecular weight and are rapidly excreted through the peritoneal blood vessels, maintaining the i.p. concentration as high as expected is a challenge. In this study, we examined whether i.p. administration is an efficient route of administration of high-molecular-weight immune checkpoint inhibitors (ICIs) for the treatment of peritoneal dissemination using a model of peritoneal disseminated carcinoma. After i.p. administration, the amount of anti-PD-L1 antibody transferred into i.p. tumors increased by approximately eight folds compared to that after i.v. administration. Intratumoral distribution analysis revealed that anti-PD-L1 antibodies were delivered directly from the i.p. space to the surface of tumor tissue, and that they deeply penetrated the tumor tissues after i.p. administration; in contrast, after i.v. administration, anti-PD-L1 antibodies were only distributed around blood vessels in tumor tissues via the enhanced permeability and retention (EPR) effect. Owing to the enhanced delivery, the therapeutic efficacy of anti-PD-L1 antibody in the peritoneal dissemination models was also improved after i.p. administration compared to that after i.v. administration. This is the first study to clearly demonstrate an EPR-independent delivery of ICIs to i.p. tumors by which ICIs were delivered in a massive amount to the tumor tissue via direct penetration after i.p. administration.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Anticuerpos , Permeabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA