RESUMEN
Lung-resident memory B cells (lung-BRMs) differentiate into plasma cells after reinfection, providing enhanced pulmonary protection. Here, we investigated the determinants of lung-BRM differentiation upon influenza infection. Kinetic analyses revealed that influenza nucleoprotein (NP)-specific BRMs preferentially differentiated early after infection and required T follicular helper (Tfh) cell help. BRM differentiation temporally coincided with transient interferon (IFN)-γ production by Tfh cells. Depletion of IFN-γ in Tfh cells prevented lung-BRM differentiation and impaired protection against heterosubtypic infection. IFN-γ was required for expression of the transcription factor T-bet by germinal center (GC) B cells, which promoted differentiation of a CXCR3+ GC B cell subset that were precursors of lung-BRMs and CXCR3+ memory B cells in the mediastinal lymph node. Absence of IFN-γ signaling or T-bet in GC B cells prevented CXCR3+ pre-memory precursor development and hampered CXCR3+ memory B cell differentiation and subsequent lung-BRM responses. Thus, Tfh-cell-derived IFN-γ is critical for lung-BRM development and pulmonary immunity, with implications for vaccination strategies targeting BRMs.
Asunto(s)
Gripe Humana , Linfocitos T Colaboradores-Inductores , Humanos , Interferón gamma/metabolismo , Células B de Memoria , Células T Auxiliares Foliculares/metabolismo , Centro Germinal , Diferenciación Celular , Receptores CXCR3/metabolismoRESUMEN
Donor-specific antibody (DSA) responses against human leukocyte antigen (HLA) proteins mismatched between kidney transplant donors and recipients cause allograft loss. Using single-cell, molecular, structural, and proteomic techniques, we profiled the HLA-specific (alloreactive) B cell response in kidney and blood of a transplant recipient with antibody-mediated rejection (AMR). We identified 14 distinct alloreactive B cell lineages, which spanned the rejected organ and blood and expressed high-affinity anti-donor HLA-specific B cell receptors, many of which were clonally linked to circulating DSA. The alloreactive B cell response was focused on exposed, solvent-accessible mismatched HLA residues, while also demonstrating extensive contacts with self-HLA residues. Consistent with structural evidence of self-recognition, measurable self-reactivity by donor-specific B cells was common and positively correlated with anti-donor affinity maturation. Thus, allo- and self-reactive signatures appeared to converge, suggesting that during AMR, the recognition of non-self and breaches of tolerance conspire to produce a pathogenic donor-specific adaptive response.
RESUMEN
[This corrects the article DOI: 10.1016/j.heliyon.2019.e01409.].
RESUMEN
Non-coding variants or single-nucleotide polymorphisms (SNPs) play pivotal roles in orchestrating pathogeneses of polygenic diseases, including hypertension (HTN) and diabetes. Renin-angiotensin system (RAS) components-renin and (pro)renin receptor [(P)RR]-maintain homeostasis of body fluids. Genetic variants of RAS components are associated with risk of HTN and type 2 diabetes (T2D) in different ethnic groups. We identified associations of SNPs within the renin and (P)RR genes with HTN, T2D, and T2D-associated hypertension in 911 unrelated Bangladeshi individuals. Five non-coding SNPs were involved in modulating regulatory elements in diverse cell types when tagged with other SNPs. rs61827960 was not associated with any disease; rs3730102 was associated with increased risk of HTN and T2D while under dominant model, it showed protective role against T2D-associated HTN. SNP rs11571079 was associated with increased risk of HTN and T2D-associated HTN and decreased risk of T2D, exerting a protective effect. Renin haplotypes GCA and GTG were related to increased risk of T2D and T2D-associated HTN, respectively. Heterogeneous linkage of genotypic and allelic frequencies of rs2968915 and rs3112298 of (P)RR was observed. The (P)RR haplotype GA was associated with increased risk of HTN and significantly decreased risk of T2D. These findings highlight important roles of non-coding variants of renin and (P)RR genes in the etiology of several polygenic diseases.
Asunto(s)
Diabetes Mellitus Tipo 2/epidemiología , Predisposición Genética a la Enfermedad , Hipertensión/epidemiología , Polimorfismo de Nucleótido Simple , ARN no Traducido/genética , Receptores de Superficie Celular/genética , Renina/genética , ATPasas de Translocación de Protón Vacuolares/genética , Bangladesh/epidemiología , Biomarcadores/metabolismo , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Femenino , Estudios de Seguimiento , Genotipo , Humanos , Hipertensión/genética , Hipertensión/patología , Masculino , Persona de Mediana Edad , PronósticoRESUMEN
BACKGROUND: Plasma renin can predict future cardiovascular events as well as the prevalence of chronic renal disease in hypertensive subjects. Ovine angiotensinogen (oANG) is a better substrate for measuring renin concentration through activity assay. Recombinant oANG expressed in Escherichia coli cells can be utilized as the substrate while measuring plasma renin. We aim to establish an immunoassay for measuring renin concentration at picomolar level using recombinant oANG. MATERIAL AND METHODS: Recombinant oANG was expressed in E. coli cells and purified to homogeneity. Various concentrations (0-1.5 pM) of recombinant human renin standard were prepared and incubated with recombinant oANG. Renin activity was determined by angiotensin-I specific enzyme-linked immunosorbent assay. RESULTS: About 4.5 mg of purified recombinant oANG was obtained from 0.5 L of E. coli culture. The Michaelis constant and turnover number of human renin with recombinant oANG were 0.16 µM and 0.51 s-1, respectively. A linear relationship was obtained when renin activity was plotted as a function of renin concentration using recombinant oANG as the renin substrate. Picomolar amounts of renin can be measured from known renin activity using this method. CONCLUSION: This study established a novel assay system for measuring renin at picomolar level using cost effective recombinant oANG.
RESUMEN
Glutathione S-transferases (GSTs) belong to a group of multigene detoxification enzymes, which defend cells against oxidative stress. Tannery workers are at risk of oxidative damage that is usually detoxified by GSTs. This study investigated the genotypic frequencies of GST Mu1 (GSTM1) and GST Theta1 (GSTT1) in Bangladeshi tannery workers and healthy controls followed by their status of oxidative stress and total GST activity. Of the 188 individuals, 50.0% had both GSTM1 and GSTT1 (+/+), 12.2% had GSTM1 (+/-), 31.4% had GSTT1 (-/+) alleles, and 6.4% had null genotypes (-/-) with respect to both GSTM1 and GSTT1 alleles. Among 109 healthy controls, 54.1% were double positive, 9.2% had GSTM1 allele, 32.1% had GSTT1 allele, and 4.6% had null genotypes. Out of 79 tannery workers, 44.3% were +/+, 16.8% were +/-, 30.5% were -/+, and 8.4% were -/-. Though the polymorphic genotypes or allelic variants of GSTM1 and GSTT1 were distributed among the study subjects with different frequencies, the differences between the study groups were not statistically significant. GST activity did not vary significantly between the two groups and also among different genotypes while level of lipid peroxidation was significantly higher in tannery workers compared to controls irrespective of their GST genotypes.