Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Metabolites ; 14(4)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38668338

RESUMEN

The irrational use of antibiotics has favored the emergence of resistant bacteria, posing a serious threat to global health. To counteract antibiotic resistance, this research seeks to identify novel antimicrobials derived from essential oils that operate through several mechanisms. It aims to evaluate the quality and composition of essential oils from Origanum compactum and Origanum elongatum; test their antimicrobial activity against various strains; explore their synergies with commercial antibiotics; predict the efficacy, toxicity, and stability of compounds; and understand their molecular interactions through docking and dynamic simulations. The essential oils were extracted via hydrodistillation from the flowering tops of oregano in the Middle Atlas Mountains in Morocco. Gas chromatography combined with mass spectrometry (GC-MS) was used to examine their composition. Nine common antibiotics were chosen and tested alone or in combination with essential oils to discover synergistic effects against clinically important and resistant bacterial strains. A comprehensive in silico study was conducted, involving molecular docking and molecular dynamics simulations (MD). O. elongatum oil includes borneol (8.58%), p-cymene (42.56%), thymol (28.43%), and carvacrol (30.89%), whereas O. compactum oil is mostly composed of γ-terpinene (22.89%), p-cymene (15.84%), thymol (10.21%), and (E)-caryophyllene (3.63%). With O. compactum proving to be the most potent, these essential oils showed antibacterial action against both Gram-positive and Gram-negative bacteria. Certain antibiotics, including ciprofloxacin, ceftriaxone, amoxicillin, and ampicillin, have been shown to elicit synergistic effects. To fight resistant bacteria, the essential oils of O. compactum and O. elongatum, particularly those high in thymol and (E)-caryophyllene, seem promising when combined with antibiotics. These synergistic effects could result from their ability to target the same bacterial proteins or facilitate access to target sites, as suggested by molecular docking simulations. Molecular dynamics simulations validated the stability of the examined protein-ligand complexes, emphasizing the propensity of substances like thymol and (E)-caryophyllene for particular target proteins, opening the door to potentially effective new therapeutic approaches against pathogens resistant to multiple drugs.

2.
J Ethnopharmacol ; 325: 117834, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38309486

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Olea europaea L. and Hyphaene thebaica L. are commonly employed by traditional healers in Africa for treating and preventing hypertension, either individually or in a polyherbal preparation (Ifanosine). AIM OF THE STUDY: The primary aim was to assess the antihypertensive effects of Olea europaea L. leaves aqueous extract (OEL), Hyphaene thebaica L. mesocarp extract (HT), and the Ifanosine on isolated rat aorta rings. The secondary objective was to evaluate the clinical benefits of a new oral formulation of Ifanosine. MATERIALS AND METHODS: In vitro studies using an isometric transducer examined the antihypertensive effects of HT, OEL, and Ifanosine on rat aorta. Ussing chambers technic were employed to measure mucosal to serosal fluxes and total transepithelial electrical conductance (Gt) to assess the intestinal bioavailability of HT, OEL, and Ifanosine. HPLC was utilized to determine the phytochemical composition of OEL and HT extracts. Subchronic toxicity investigations involved two groups of rats, treated with either water (control) or Ifanosine at 5 g/kg for 28 days. Clinical benefits of the new Ifanosine formulation were evaluated in an observational study with 32 hypertensive patients receiving a fixed oral dose of 3.5 mg three times a day for 30 days. RESULTS: Aqueous extracts induced dose-dependent relaxation of rat aorta rings, with HT and OEL having higher IC50 values than Ifanosine (IC50 = 44.76 ± 1.35 ng/mL, 58.67 ± 1.02 ng/mL, and 29.46 ± 0.26 ng/mL, respectively). The pA2 values of OEL and HT were 1 and 0.6, respectively, while Ifanosine was 0.06. Intestinal bioavailability studies revealed better Prazosin bioavailability than plant extracts. Toxicological studies demonstrated the safety of Ifanosine, supported by histological examinations and biochemical parameters in rat blood. Biochemical analyses indicated flavonoids and phenolic acids as dominant active constituents. Clinical benefits in humans included reduced SBP, DBP, LDL-c, VLDL-c, and TAG, and increased HDL-c without overt adverse effects. CONCLUSION: This study validates the traditional use of OEL and HT for hypertension and advocates for alternative and combinatorial polyphytotherapy (ACP) to enhance traditional remedies.


Asunto(s)
Hipertensión , Olea , Humanos , Ratas , Animales , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Antihipertensivos/análisis , Olea/química , Hipertensión/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Hojas de la Planta/química , Resultado del Tratamiento
3.
Medicina (Kaunas) ; 59(10)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37893466

RESUMEN

Background and Objectives: Curcumin, derived from Curcuma longa, is a well-known traditional medicinal compound recognized for its therapeutic attributes. Nevertheless, its efficacy is hampered by limited bioavailability, prompting researchers to explore the application of nanoemulsion as a potential alternative. Materials and Methods: This study delves into the antihypertensive effects of curcumin nanoemulsion (SNEC) by targeting the renin-angiotensin-aldosterone system (RAAS) and oxidative stress in deoxycorticosterone acetate (DOCA) salt-induced hypertensive rats. To gauge the cardio-protective impact of SNEC in DOCA salt-induced hypertension, molecular docking was undertaken, uncovering curcumin's high affinity and adept binding capabilities to the active site of angiotensin-converting enzyme (ACE). Additionally, the investigation employed uninephrectomized rats to assess hemodynamic parameters via an AD instrument. Serum ACE, angiotensin II, blood urea nitrogen (BUN), and creatinine levels were quantified using ELISA kits, while antioxidant parameters were evaluated through chemical assays. Result: The outcomes of the molecular docking analysis revealed robust binding of curcumin to the ACE active site. Furthermore, oral administration of SNEC significantly mitigated systolic, diastolic, and mean arterial blood pressure in contrast to the DOCA-induced hypertensive group. SNEC administration also led to a reduction in left ventricular end-diastolic pressure (LVEDP) and an elevation in the maximum rate of left ventricular pressure rise (LV (dP/dt) max). Moreover, SNEC administration distinctly lowered serum levels of ACE and angiotensin II compared to the hypertensive DOCA group. Renal markers, including serum creatinine and BUN, displayed a shift toward normalized levels with SNEC treatment. Additionally, SNEC showcased potent antioxidant characteristics by elevating reduced glutathione, catalase, and superoxide dismutase levels, while decreasing the concentration of thiobarbituric acid reactive substances. Conclusions: Collectively, these findings underscore that curcumin nanoemulsion exerts noteworthy cardio-protective effects through ACE activity inhibition and remarkable antioxidant properties.


Asunto(s)
Curcumina , Acetato de Desoxicorticosterona , Hipertensión , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Curcumina/farmacología , Curcumina/uso terapéutico , Acetato de Desoxicorticosterona/efectos adversos , Angiotensina II/efectos adversos , Simulación del Acoplamiento Molecular , Ratas Wistar , Antihipertensivos/uso terapéutico , Presión Sanguínea
4.
Medicina (Kaunas) ; 59(10)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37893532

RESUMEN

Background and Objectives: Paracetamol overdose is a significant global issue due to its widespread use, which can lead to a lack of awareness regarding its potential side effects. Paracetamol can harm the liver, possibly resulting in liver failure. Conversely, this study employed extracts from Petroselinum crispum (PC), known for its rich content of bioactive compounds, with demonstrated antioxidant properties shown in previous research as well as protective effects against various diseases. The primary objective of this study was to investigate the potential protective effects of Petroselinum crispum on altered hematological and biochemical parameters in the blood of rats exposed to paracetamol. Materials and Methods: The study involved twenty Wistar rats divided into four groups. Different groups of male rats were administered PC extract at 200 mg/kg body weight daily for 15 days, along with a standard reference dose of paracetamol at 200 mg/kg. The study assessed hepatoprotection capacity by analyzing liver enzymes such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), bilirubin, albumin, and lipid profiles. Renal safety was evaluated through creatinine, urea, uric acid, lactate dehydrogenase (LDH), and total protein. Additionally, histopathological examinations of the liver and kidneys were conducted. Results: Following Paracetamol overdose, there were reductions in hemoglobin levels, serum total protein, albumin, and uric acid. Paracetamol overdose also elevated levels of several blood biomarkers, including creatinine, urea, nitrogen, ALT, AST, triglycerides, LDH activity, white blood cell count, and platelet count compared to the control group. However, using an ethanolic extract of Petroselinum crispum significantly mitigated the severity of these alterations and the extent of the effect correlated with the dose administered. Parsley extract helped prevent proteinuria and low hemoglobin, which are common side effects of Paracetamol. Conclusions: Therefore, parsley may hold promise in managing liver and kidney conditions-particularly in addressing proteinuria. Ultimately, these results may have implications for human health by potentially mitigating paracetamol-induced renal, hepatic, and hematological toxicity.


Asunto(s)
Acetaminofén , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Ratas , Masculino , Animales , Acetaminofén/toxicidad , Petroselinum , Ratas Wistar , Ácido Úrico/farmacología , Creatinina/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/metabolismo , Hígado , Proteinuria , Albúminas , Urea , Hemoglobinas
5.
Plants (Basel) ; 12(19)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37836118

RESUMEN

Throughout history, essential oils have been employed for their pleasing scents and potential therapeutic benefits. These oils have shown promise in various areas, including aromatherapy, personal care products, natural remedies, and even as alternatives to traditional cleaning agents or pest control solutions. The study aimed to explore the chemical makeup, antioxidant, and antibacterial properties of Origanum compactum Benth., Salvia officinalis L., and Syzygium aromaticum (L.) Merr. et Perry. Initially, the composition of the three essential oils, O. compactum (HO), S. officinalis (HS), and S. aromaticum (HC) was analyzed using GC-MS technology, revealing significant differences in the identified compounds. α-thujone emerged as the predominant volatile component in the oils, making up 78.04% of the composition, followed by eugenol, which constituted 72.66% and 11.22% of the HC and HO oils, respectively. To gauge antioxidant capabilities, tests involving DPPH scavenging capacity and total antioxidant capacity were conducted. Antioxidant activity was determined through the phosphomolybdate test and the DPPH• radical scavenging activity, with the HO essential oil displaying significant scavenging capacity (IC50 of 0.12 ± 0.02 mg/mL), similar to ascorbic acid (IC50 of 0.26 ± 0.24 mg/mL). Similarly, the TAC assay for HO oil revealed an IC50 of 1086.81 ± 0.32 µM AAE/mg. Additionally, the oils' effectiveness against four bacterial strains, namely Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Listeria monocytogenes, and five fungi, Geotrichum candidum, Aspergillus niger, Saccharomyces cerevisiae, Candida glabrata, and Candida albicans, was tested in vitro. The examined essential oils generally exhibited limited antimicrobial effects, with the exception of HC oil, which demonstrated an exceptionally impressive level of antifungal activity. In order to clarify the antioxidant, antibacterial, and antifungal effects of the identified plant compounds, we employed computational methods, specifically molecular docking. This technique involved studying the interactions between these compounds and established protein targets associated with antioxidant, antibacterial, and antifungal activities.

6.
RSC Med Chem ; 14(10): 1981-1991, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37859719

RESUMEN

Among the promising therapeutic targets for treating cancer are the continuously active STAT proteins, which are important in the progression of many malignancies. Here, we detail the STAT3/5 inhibitory action and thiopyrimidine/chalcone hybrid design, production, and anti-hepatocellular carcinoma activity. The prepared hybrids were assessed for their cytotoxic effect on HepG2 and Huh7 liver cancer cells. The most active compounds 5e and 5h (IC50 range from 0.55 to 2.58 µM) were further evaluated against normal THLE cells to examine their safety profiles. The hybrids 5e and 5h were additionally tested for their potential to inhibit STAT3 and STAT5a. They showed dual inhibitory action, with a decrease in the level of STAT3 by 65 and 87 times, respectively, and a decrease in the level of STAT5 by 60 and 79.5 times, respectively, compared to the control. Additionally, western blot analysis of compound 5h revealed inhibition of STAT3 and STAT5 phosphorylation at Tyr705 and Tyr694, respectively, with only a slight decrease in the total expression of STAT3 and STAT5 proteins. And lastly, molecular docking research provided additional insight on the 5h binding mechanism in the STAT3 and STAT5 SH2 domains.

7.
Saudi J Biol Sci ; 30(9): 103778, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37663396

RESUMEN

Pioglitazone (PGL) is an effective insulin sensitizer, however, side effects such as accumulation of subcutaneous fat, edema, and weight gain as well as poor oral bioavailability limit its therapeutic potential for oral delivery. Recent studies have shown that combination of both, PGL and fish oil significantly reduce fasting plasma glucose, improve insulin resistance, and mitigate pioglitazone-induced subcutaneous fat accumulation and weight gain. Nevertheless, developing an effective oral drug delivery system for administration of both medications have not been explored yet. Thus, this study aimed to develop a self-micro emulsifying drug delivery system (SMEDDS) for the simultaneous oral administration of PGL and fish oil. SMEDDS was developed using concentrated fish oil,Tween® 80, and Transcutol HP and optimized by central composite design (CCD). The reconstituted, optimized PGL-SMEDDS exhibited a globule size of 142 nm, a PDI of 0.232, and a zeta potential of -20.9 mV. The in-vitro drug release study of the PGL-SMEDDS showed a first-order model kinetic release and demonstrated remarkable 15-fold enhancement compared to PGL suspension. Additionally, following oral administration in fasting albino Wistar rats, PGL-SMEDDS exhibited 3.4-fold and 1.4-fold enhancements in the AUC0-24h compared to PGL suspension and PGL marketed product. The accelerated stability testing showed that the optimized SMEDDS formulation was stable over a three-month storage period. Taken together, our findings demonstrate that the developed fish oil-based SMEDDS for PGL could serve as effective nanoplatforms for the oral delivery of PGL, warranting future studies to explore its synergistic therapeutic potential in rats.

8.
Saudi Pharm J ; 31(9): 101727, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37638219

RESUMEN

In the past, curcumin was the go-to medication for diabetes, but recent studies have shown that tetrahydrocurcumin is more effective. The problem is that it's not very soluble in water or very bioavailable. So, our research aims to increase the bioavailability and anti-diabetic efficacy of tetrahydrocurcumin in streptozotocin-induced diabetic rats by synthesizing tetrahydrocurcumin-loaded solid lipid nanoparticles. Box Behnken Design was employed for the optimization of tetrahydrocurcumin-loaded solid lipid nanoparticles (THC-SLNs). The optimal formulation was determined by doing an ANOVA to examine the relationship between the independent variables (drug-to-lipid ratio, surfactant concentration, and co-surfactant concentration) and the dependent variables (particle size, percent entrapment efficiency, and PDI). Particle size, PDI, and entrapment efficiency all showed statistical significance based on F-values and p-values. The optimized batch was prepared using a drug-to-lipid ratio (1:4.16), 1.21% concentration of surfactant, and 0.4775% co-surfactant (observed with a particle size of 147.1 nm, 83.58 ± 0.838 % entrapment efficiency, and 0.265 PDI, and the values were found very close with the predicted ones. As the THC peak vanishes from the DSC thermogram of the improved formulation, this indicates that the drug has been transformed from its crystalline form into its amorphous state. TEM analysis of optimized formulation demonstrated mono-dispersed particles with an average particle size of 145 nm which are closely related to zetasizer's results. In-vitro release study of optimized formulation demonstrated burst release followed by sustained release up to 71.04% throughout 24 hrs. Increased bioavailability of the adjusted THC-SLN was found in an in vivo pharmacokinetics research with 9.47 folds higher AUC(0-t) compared to plain THC-suspension. Additionally, pharmacodynamic experiments of optimized formulation demonstrated a marked decrease in blood glucose level to 63.7% and increased body weight from 195.8 ± 7.223 to 231.2 ± 7.653 on the 28th day of the study and showed a better anti-diabetic effect than plain drug suspension. Results of stability studies revealed that formulation can be stored for longer periods at room temperature. Tetrahydrocurcumin can be effectively administered by SLN for the treatment of diabetes.

9.
Artículo en Inglés | MEDLINE | ID: mdl-37594095

RESUMEN

INTRODUCTION: The conventional processes of drug discovery are too expensive, time-consuming and the success rate is limited. Searching for alternatives that have evident safety and potential efficacy could save money, time and improve the current therapeutic regimen outcomes. METHOD: Clinical phytotherapy implies the use of extracts of natural origin for prophylaxis, treatment, or management of human disorders. In this work, the potential role of common Fig (Ficus carica) in the management of COVID-19 infections has been explored. The antiviral effects of Cyanidin-3-rhamnoglucoside which is abundant in common Figs have been illustrated on COVID-19 targets. The immunomodulatory effect and the ability to ameliorate the cytokine storm associated with coronavirus infections have also been highlighted. This work involves various computational studies to investigate the potential roles of common figs in the management of COVID-19 viral infections. RESULTS: Two molecular docking studies of all active ingredients in common Figs were conducted starting with MOE to provide initial insights, followed by Autodock Vina for further confirmation of the results of the top five compounds with the best docking score. CONCLUSION: Finally, Molecular dynamic simulation alongside MMPBSA calculations were conducted using GROMACS to endorse and validate the entire work.

10.
Molecules ; 28(15)2023 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-37570884

RESUMEN

Rheumatoid arthritis (RA) remains one of the most prevalent autoimmune diseases worldwide. Janus kinase 3 (JAK3) is an essential enzyme for treating autoimmune diseases, including RA. Molecular modeling techniques play a crucial role in the search for new drugs by reducing time delays. In this study, the 3D-QSAR approach is employed to predict new JAK3 inhibitors. Two robust models, both field-based with R2 = 0.93, R = 0.96, and Q2 = 87, and atom-based with R2 = 0.94, R = 0.97, and Q2 = 86, yielded good results by identifying groups that may readily direct their interaction. A reliable pharmacophore model, DHRRR1, was provided in this work to enable the clear characterization of chemical features, leading to the design of 13 inhibitors with their pIC50 values. The DHRRR1 model yielded a validation result with a ROC value of 0.87. Five promising inhibitors were selected for further study based on an ADMET analysis of their pharmacokinetic properties and covalent docking (CovDock). Compared to the FDA-approved drug tofacitinib, the pharmaceutical features, binding affinity and stability of the inhibitors were analyzed through CovDock, 300 ns molecular dynamics simulations, free energy binding calculations and ADMET predictions. The results show that the inhibitors have strong binding affinity, stability and favorable pharmaceutical properties. The newly predicted molecules, as JAK3 inhibitors for the treatment of RA, are promising candidates for use as drugs.


Asunto(s)
2-Aminopurina , Antirreumáticos , Diseño Asistido por Computadora , Diseño de Fármacos , Janus Quinasa 3 , Inhibidores de las Cinasas Janus , 2-Aminopurina/análogos & derivados , 2-Aminopurina/farmacología , Inhibidores de las Cinasas Janus/química , Inhibidores de las Cinasas Janus/farmacología , Janus Quinasa 3/antagonistas & inhibidores , Relación Estructura-Actividad Cuantitativa , Piperidinas/química , Piperidinas/farmacología , Pirimidinas/química , Pirimidinas/farmacología , Artritis Reumatoide/tratamiento farmacológico , Antirreumáticos/química , Antirreumáticos/farmacología , Farmacóforo
11.
Molecules ; 28(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446770

RESUMEN

In this study, we examined the sub-acute toxicity of quercetin and ferulic acid and evaluated their effects on protein, cholesterol, and estrogen levels in vivo. Six groups of female Wistar rats were fed by gavage. The first and second groups represent the positive (Clomiphene citrate 10 mg/kg) and negative (NaCl 0.9%) control groups, while the other groups received quercetin and ferulic acid at doses of 5 and 10 mg/kg/day for 28 days. The sub-acute toxicity was monitored by examining the weights, biochemical parameters (AST, ALT, ALP, urea, and CREA), and histological changes in the kidneys and liver of the treated animals. Furthermore, the in vivo estrogenic effects were studied in terms of the serum and ovarian cholesterol levels, serum estradiol, and uterine proteins. Finally, Docking studies were conducted to evaluate the binding affinity of quercetin and ferulic acid for alpha and beta estrogen receptors. Results showed that both compounds were devoid of any signs of nephrotoxicity or hepatotoxicity. Additionally, quercetin and ferulic acid caused significant estrogenic effects evidenced by an increase of 8.7 to 22.48% in serum estradiol, though to a lesser amount than in the reference drug-treated group (64.21%). Moreover, the two compounds decreased the serum cholesterol levels (12.26-32.75%) as well as the ovarian cholesterol level (11.9% to 41.50%) compared to the negative control. The molecular docking in estrogen alpha and estrogen beta active sites showed high affinity of quercetin (-10.444 kcal/mol for estrogen alpha and -10.662 kcal/mol for estrogen beta) and ferulic acid (-6.377 kcal/mol for estrogen alpha and -6.3 kcal/mol for estrogen beta) to these receptors. This study provides promising insights into the potential use of quercetin as a therapeutic agent for the management of female fertility issues.


Asunto(s)
Estrógenos , Quercetina , Ratas , Animales , Femenino , Quercetina/farmacología , Ratas Wistar , Simulación del Acoplamiento Molecular , Estrona , Estradiol , Colesterol
12.
Saudi Pharm J ; 31(8): 101686, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37448842

RESUMEN

The Papaver rhoeas L. (P. rhoeas) plant, which belongs to the Papaveraceae family, is also used as food and is exploited to treat several health problems. The purpose of this research is to determine the anti-struvite, anti-inflammatory, analgesic, and antidepressant effects of the stem extract (SE) and flower extract (FE) of the plant P. rhoeas. We used polarizing microscopy and Fourier transform infrared spectrometry (FT-IR) to evaluate the anti-struvite effect of our plant. The edema approach induced by the carrageenan molecule was used to study the anti-inflammatory impact of our extracts. The analgesic test was determined by calculating the number of abdominal contractions induced by the intraperitoneal (IP) administration of acetic acid. To evaluate the antidepressant effect of our extracts, we used the forced swimming test (FST). According to the results of the secondary metabolite extraction, both extracts contained high contents of secondary metabolites, while the results of the screening test showed that flavonoids, alkaloids, phenols, tannins, coumarins, saponins, and terpenoids were present. The result of struvite crystallization inhibition observed by polarizing microscopy and FT-IR shows the inhibition of struvite crystal aggregation by SE by decreasing the amount and size of crystals in a manner similar to cystone. The results of anti-inflammatory activity show maximum inhibition of edema after six hours of carrageenan injection in rats (T6) for all extracts, with a maximum value of 86.36% for SE at the dose of 200 mg/kg. Regarding the analgesic effect of our plant, the lowest number of abdominal contractions was observed in rats treated with SE at a dose of 400 mg/kg. The FST results show that the lowest immobilization time was observed in rats treated with FE at a dose of 400 mg/kg. The results obtained show that the flowers and stems of P. rhoeas can constitute a rich source of bioactive molecules with potential pharmaceutical applications.

13.
Life (Basel) ; 13(6)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37374031

RESUMEN

The accumulation of body fat due to an imbalance between calorie intake and energy expenditure is called obesity. Metabolic syndrome increases the risk of heart disease, type 2 diabetes, and stroke. The purpose of this study was to determine the effect of Jatropha tanjorensis (J.T.) and Fraxinus micrantha (F.M.) leaf extracts on high-fat diet-induced obesity in rats. Normal control, high-fat diet (HFD) control, orlistat standard, and test groups were created using male Albino Wistar rats (n = 6 per group) weighing 190 ± 15 g. Except for the control group, all regimens were administered orally and continued for 6 weeks while on HFD. Evaluation criteria included body weight, food intake, blood glucose, lipid profile, oxidative stress, and liver histology. High-Performance Thin Layer Chromatography (HPTLC) analysis was performed using a solvent system (7:3 hexane: ethyl acetate for sitosterol solution and Jatropha tanjorensis extracts and 6:4 hexane: ethyl acetate: 1 drop of acetic acid for esculetin and Fraxinus micrantha extracts). There were no deaths during the 14 days before the acute toxicity test, indicating that aqueous and ethanolic extracts of both J.T. and F.M. did not produce acute toxicity at any dose (5, 50, 300, and 2000 mg/kg). The ethanolic and aqueous extracts of J.T. and F.M. leaves at 200 and 400 mg/kg/orally showed a reduction in weight gain, feed intake, and significant decreases in serum glucose and lipid profile. As compared to inducer HFD animals, co-treatment of aqueous and ethanolic extract of both J.T. and F.M. and orlistat increased the levels of antioxidant enzymes and decreased lipid peroxidation. The liver's histological findings showed that the sample had some degree of protection. These results indicate that ethanolic samples of J.T. have antidiabetic potential in diabetic rats fed an HFD. The strong antioxidant potential and restoration of serum lipid levels may be related to this. Co-treatment of samples JTE, JTAQ, FME, FMAQ and orlistat resulted in an increase in antioxidant enzymes and reduction in lipid peroxidation as compared to inducer HFD animals. We report, for the first time, on using these leaves to combat obesity.

14.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37111302

RESUMEN

In order to valorize the species Crocus sativus from Morocco and to prepare new products with high added value that can be used in the food and pharmaceutical industry, our interest was focused on the phytochemical characterization and the biological and pharmacological properties of the stigmas of this plant. For this purpose, the essential oil of this species, extracted by hydrodistillation and then analyzed by GC-MS, revealed a predominance of phorone (12.90%); (R)-(-)-2,2-dimethyl-1,3-dioxolane-4-methanol (11.65%); isopropyl palmitate (9.68%); dihydro-ß-ionone (8.62%); safranal (6.39%); trans-ß-ionone (4.81%); 4-keto-isophorone (4.72%); and 1-eicosanol (4.55%) as the major compounds. The extraction of phenolic compounds was performed by decoction and Soxhlet extraction. The results of the determination of flavonoids, total polyphenols, condensed tannins, and hydrolyzable tannins determined by spectrophotometric methods on aqueous and organic extracts have proved the richness of Crocus sativus in phenolic compounds. Chromatographic analysis by HPLC/UV-ESI-MS of Crocus sativus extracts revealed the presence of crocin, picrocrocin, crocetin, and safranal molecules specific to this species. The study of antioxidant activity by three methods (DPPH, FRAP, and total antioxidant capacity) has proved that C. sativus is a potential source of natural antioxidants. Antimicrobial activity of the aqueous extract (E0) was investigated by microdilution on a microplate. The results have revealed the efficacy of the aqueous extract against Acinetobacter baumannii and Shigella sp. with MIC ≤ 600 µg/mL and against Aspergillus niger, Candida kyfer, and Candida parapsilosis with MIC = 2500 µg/mL. Measurements of pro-thrombin time (PT) and activated partial thromboplastin time (aPTT) in citrated plasma obtained from routine healthy blood donors were used to determine the anticoagulant activity of aqueous extract (E0). The anticoagulant activity of the extract (E0) studied showed that this extract can significantly prolong the partial thromboplastin time (p < 0.001) with a 359 µg/mL concentration. The antihyperglycemic effect of aqueous extract was studied in albino Wistar rats. The aqueous extract (E0) showed strong in vitro inhibitory activity of α-amylase and α-glucosidase compared with acarbose. Thus, it very significantly inhibited postprandial hyperglycemia in albino Wistar rats. According to the demonstrated results, we can affirm the richness of Crocus sativus stigmas in bioactive molecules and its use in traditional medicine.

15.
Molecules ; 28(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37049738

RESUMEN

The essential oils yield of Cedrus atlantica, Chenopodium ambrosioides and Eucalyptus camaldulensis was different. C. ambrosioides gave a relatively higher yield (2.1 ± 0.1%), while that of C. atlantica was low (1.0 ± 0.1%) and that of E. camaldulensis was lower (0.75 ± 0.1% of dry matter). The active ingredients of the essential oils and some of their biological effects were also determined. The characterization of their chemical compositions showed that the three essences have different chemical profiles: C. atlantica was richer in sesquiterpenes (ß-Himachalene (54.21%) and γ -Himachalene (15.54%)), C. ambrosioides was very rich in monoterpene peroxides and monoterpenes (α-Terpinene (53.4%), ascaridole (17.7%) and ρ-Cymene (12.1%)) and E. camaldulensis was very rich in monoterpene compounds and monoterpenols (p-cymene (35.11%), γ-Eudesmol (11.9%), L-linalool (11.51%) and piperitone (10.28%)). The in vitro measurement of antioxidant activity by the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) reduction assay showed a significant performance of the eucalyptus oil and average performance of the other two (C. atlantica and C. ambrosioides). The in vitro bio-test for their antimicrobial effects showed that the antibacterial activity differed depending on the essential oil and the concentration used, and that their bactericidal efficacy was similar or superior to that of synthetic antibiotics. The toxicity test on rats revealed that the LD50 of the three essential oils was 500 mg/kg body weight, which classifies them as category four cytotoxic natural products at high doses.


Asunto(s)
Chenopodium ambrosioides , Eucalyptus , Aceites Volátiles , Ratas , Animales , Antioxidantes/farmacología , Eucalyptus/química , Chenopodium ambrosioides/química , Cedrus , Aceite de Eucalipto , Antibacterianos/farmacología , Monoterpenos/farmacología , Monoterpenos/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Aceites de Plantas/farmacología , Aceites de Plantas/química
16.
Molecules ; 28(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36903587

RESUMEN

In the emerging field of nanomedicine, nanoparticles have been widely considered as drug carriers and are now used in various clinically approved products. Therefore, in this study, we synthesized superparamagnetic iron-oxide nanoparticles (SPIONs) via green chemistry, and the SPIONs were further coated with tamoxifen-conjugated bovine serum albumin (BSA-SPIONs-TMX). The BSA-SPIONs-TMX were within the nanometric hydrodynamic size (117 ± 4 nm), with a small poly dispersity index (0.28 ± 0.02) and zeta potential of -30.2 ± 0.09 mV. FTIR, DSC, X-RD, and elemental analysis confirmed that BSA-SPIONs-TMX were successfully prepared. The saturation magnetization (Ms) of BSA-SPIONs-TMX was found to be ~8.31 emu/g, indicating that BSA-SPIONs-TMX possess superparamagnetic properties for theragnostic applications. In addition, BSA-SPIONs-TMX were efficiently internalized into breast cancer cell lines (MCF-7 and T47D) and were effective in reducing cell proliferation of breast cancer cells, with IC50 values of 4.97 ± 0.42 µM and 6.29 ± 0.21 µM in MCF-7 and T47D cells, respectively. Furthermore, an acute toxicity study on rats confirmed that these BSA-SPIONs-TMX are safe for use in drug delivery systems. In conclusion, green synthesized superparamagnetic iron-oxide nanoparticles have the potential to be used as drug delivery carriers and may also have diagnostic applications.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas , Neoplasias , Humanos , Ratas , Animales , Nanopartículas de Magnetita/química , Células MCF-7 , Nanopartículas Magnéticas de Óxido de Hierro , Portadores de Fármacos , Nanopartículas/química , Hierro , Óxidos
17.
J Biomol Struct Dyn ; 41(17): 8517-8534, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36271642

RESUMEN

Pancreatic adenocarcinoma is a disease with no effective treatment. Chemo-resistance contributes to the dismal prognosis for patients diagnosed with the disease. This study aims to evaluate the toxicity and the effect of Caralluma europaea (C.E) extracts on cancer cell survival, apoptosis, chemo-resistance, and pro-cancer pathways, in pancreatic cancer. The acute and subacute toxicities of C.E extracts were evaluated. The cytotoxic effect on pancreatic cancer cell survival and apoptosis was determined by MTT assay and DNA fragmentation. The expression of cancer stemness markers was measured using Western blot. A molecular docking was used to test the possible effects of C.E compounds in inhibiting the Hedgehog and activating caspase-3. The hydroethanolic extract's DL50 was over 5000 mg/kg. During the subacute toxicity, only saponins extract showed some hepatic toxicity signs. Cells treated with C.E extracts combined with gemcitabine revealed an additive anti-survival activity. C.E extracts sensitized resistant MIA-PaCa-2 to gemcitabine treatment. Most of the C.E extracts downregulated the expression of cancer stemness-associated genes. Luteolin-7-O-glucoside presented the highest docking Gscore on human Smoothened. Isorhamnetin-3-O-rutinoside induced apoptosis via activation of caspase-3. C.E extracts can be considered safe in inhibiting pancreatic cancer cell survival, inducing apoptosis, and sensitizing cells to chemotherapy via Hedgehog inhibition and caspase-3 activation.Communicated by Ramaswamy H. Sarma.

18.
Molecules ; 29(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38202676

RESUMEN

Cannabis is considered (Cannabis sativa L.) a sacred herb in many countries and is vastly employed in traditional medicine to remedy numerous diseases, such as diabetes. This research investigates the chemical composition of the aqueous extracts from Cannabis sativa L. seeds. Furthermore, the impact of these extracts on pancreatic α-amylase and lipase, and intestinal α-glucosidase enzymes is evaluated, as well as their antihyperglycemic effect. Analysis of the chemical composition of the aqueous extract was conducted using high-performance liquid chromatography with a photodiode array detector (HPLC-DAD). In contrast, the ethanol, hexanic, dichloromethane, and aqueous extract compositions have been established. Additionally, the inhibitory effects of ethanolic, dichloromethane, and aqueous extracts on pancreatic α-amylase and lipase, and intestinal α-glucosidase activities were evaluated in vitro and in vivo. The results of HPLC analysis indicate that the most abundant phenolic compound in the aqueous cannabis seed extract is 3-hydroxycinnamic acid, followed by 4-hydroxybenzoic acid and rutin acid. Moreover, administration of ethanolic and aqueous extracts at a dose of 150 mg/Kg significantly suppressed postprandial hyperglycemia compared to the control group; the ethanolic, dichloromethane, and aqueous extracts significantly inhibit pancreatic α-amylase and lipase, and intestinal α-glucosidase in vitro. The pancreatic α-amylase test exhibited an inhibition with IC50 values of 16.36 ± 1.24 µg/mL, 19.33 ± 1.40 µg/mL, 23.53 ± 1.70 µg/mL, and 17.06 ± 9.91 µg/mL for EAq, EDm, EET, and EHx, respectively. EET has the highest inhibitory capacity for intestinal α-glucosidase activity, with an IC50 of 32.23 ± 3.26 µg/mL. The extracts inhibit porcine pancreatic lipase activity, demonstrating their potential as lipase inhibitors. Specifically, at a concentration of 1 mg/mL, the highest inhibition rate (77%) was observed for EDm. To confirm these results, the inhibitory effect of these extracts on enzymes was tested in vivo. The oral intake of aqueous extract markedly reduced starch- and sucrose-induced hyperglycemia in healthy rats. Administration of the ethanolic extract at a specific dose of 150 mg/kg significantly reduced postprandial glycemia compared with the control group. It is, therefore, undeniable that cannabis extracts represent a promising option as a potentially effective treatment for type 2 diabetes.


Asunto(s)
Cannabis , Diabetes Mellitus Tipo 2 , Alucinógenos , Hiperglucemia , Animales , Ratas , Porcinos , Hipoglucemiantes/farmacología , alfa-Amilasas Pancreáticas , alfa-Glucosidasas , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Cloruro de Metileno , Lipasa , Hiperglucemia/tratamiento farmacológico , Agonistas de Receptores de Cannabinoides , Etanol , Extractos Vegetales/farmacología
19.
Saudi Pharm J ; 30(8): 1200-1214, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36164579

RESUMEN

Thymus vulgaris, Thymus satureioides, and Thymus zygis are endemic Moroccan species that are intensively used due to their extensive medications and culinary properties. To enhance and preserve these overexploited species, the effect of provenance on the chemical composition of essential oils and antimicrobial activity against human pathogens were studied. Essential oils (EO) obtained by hydrodistillation from the flowering tops of thyme species were analyzed by GC-SM. The determination of minimum inhibitory (MIC), bactericidal (MBC), and fungicide (MFC) concentrations of EO were studied by microplate microdilution. The correlation between the chemical composition of EO and antimicrobial properties were evaluated using R software. The samples studied gave variable yields, ranging from 0.70 ± 0.03% to 4.12 ± 0.21%. The main constituents of Thymus vulgaris harvested from the municipality of El Hammam are carvacrol (68.8%), γ-terpinene (11.5%), and p-cymene (3.9%), while borneol (41.3% and 31.7%) and carvacrol (14.6% and 9.8%) are the most abundant in Thymus satureioides of the communes of Tata and Tigrigra respectively. For Thymus zygis, the results revealed the dominance of carvacrol (51.7% and 57.5%) for the municipalities of Tigrigra and Ain Aghbal, thymol (47.1% and 42.1%) for the municipalities of Bensmim and Timahdite respectively. These chemical profiles have similarities, but also reveal differences from the results given in the literature. In addition, the essential oils most active towards the microorganisms evaluated were those of Thymus vulgaris, followed by Thymus zygis and Thymus satureioides. These EO have very powerful MIC (MIC â©½ 300 µg/ml) against Gram-negative bacteria, and in particular, concerning Enterobacters cloacae, Citrobacter koseri, and Acinetobacter baumannii. Thymus zygis EO is the most active on candidates compared to Thymus vulgaris and Thymus satureioides EO, except Candida dubliniensis which was inhibited by Thymus satureioides EO from the commune of Azrou with a MIC = 18.75 µg/ml. The correlation determined between the major components and MIC showed that phenols have the strongest positive effects on antimicrobial properties, followed by terpenes and non-aromatic alcohols. In addition, different sensitivities of pathogens to chemical families have been observed against Enterobacter cloacae, Citrobacter koseri, Candida parapsilosis, Staphylococcus aureus multiresistant, Pseudomonas aeruginosa, Acinetobacter baumannii, and Aspergillus niger. Our results support the idea that these oils could be very useful in flavoring, food preservation, as well as a source of antimicrobial agents of great power against multidrug-resistant strains.

20.
Bioorg Chem ; 129: 106122, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36084418

RESUMEN

Recently, inhibition of PIM-1 enzyme is found as an effective route in the fight against proliferation of cancer. Herein, new cyano pyridines that target PIM-1 kinase were designed, synthesized, and biologically evaluated. Two prostate cell lines were used to examine each of the new compounds in vitro for anticancer activity, namely, PC-3 and DU-145. The cyanopyridine derivatives 2b, 3b, 4b, and 5b with an N,N-dimethyl phenyl group at the pyridine ring's 4-position showed considerable antitumor effect on the tested cell lines. Additionally, the high selectivity index revealed that these compounds were less cytotoxic to normal WI-38 cells. Furthermore, they exhibited strong inhibitory effect on PIM-1 having IC50 = 0.248, 0.13, 0.326 and 0.245 µM, respectively. The most powerful derivatives2b, 3b, 4b, and 5b, were chosen for further examination of their inhibitory potential on both kinases (PIM-2 and PIM-3). Interestingly, upon loading compound 3b in a cubosomes formulation with nanometric size, improvements in cytotoxicity and inhibitory effect on PIM-1 kinase were observed. In silico ADME parameters study revealed that compound 3b is orally bioavailable without penetration to the blood-brain barrier. Further, the docking simulations revealed the ability of our potent compounds to well accommodate the PIM-1 kinase active site forming stable complexes. In a 150 ns MD simulation, the most powerful PIM-1 inhibitor 3b produced stable complex with the PIM-1 enzyme (RMSD = 1.76). Furthermore, the 3b-PIM-1 complex has the low binding free energy (-242.2 kJ/mol) according to the MM-PBSA calculations.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias de la Próstata , Humanos , Masculino , Proteínas Proto-Oncogénicas c-pim-1 , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas , Línea Celular Tumoral , Antineoplásicos/química , Neoplasias de la Próstata/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA