RESUMEN
This research paper presents a comprehensive investigation into the corrosion process in reinforced concrete structures using advanced analytical techniques, namely non-destructive X-ray computed tomography (CT) imaging, scanning electron microscopy (SEM) images, energy dispersive x-ray spectrometry (EDS), and Raman spectroscopy. The CT image analysis allowed for the identification and quantification of pore structures, crack propagation, and corrosion progression at different stages of corrosion. CT scanning and data analysis offer valuable 4D (3D spatial + time) insights into corrosion in reinforced concrete, revealing changes in pore sizes, with smaller pores increasing and larger pores decreasing as corrosion progresses. Our investigation reveals dynamic changes in reinforced concrete pores during the accelerated corrosion test leading to new pore formation and cracking. The research identifies two distinct types of cracks: one filled with corrosion products and the other, zipper-like cracks, resulting from the connection of deformed pores without corrosion products. The SEM images and EDS analysis confirmed the absence of corrosion products within these unique zipper cracks, suggesting a different mechanism of crack formation compared to the first type of cracks. The results revealed two distinct categories of corrosion products: iron oxides and iron hydroxides, with their distribution correlated to the duration of accelerated corrosion testing. The integration and verification of results from X-ray CT imaging and Raman spectroscopy established a comprehensive understanding of corrosion-induced damage in the reinforced concrete specimen, shedding light on complex interactions among different corrosion products during the corrosion process. These findings offer crucial insights for better understanding of the corrosion process in reinforced concrete paving the way for future development of effective treatments and strategies to mitigate corrosion impact.
RESUMEN
The time-dependent properties of rubber-like synthesized and biological materials are crucial for their applications. Currently, this behavior is mainly measured using axial tensile test, compression test, or indentation. Limited studies performed on using multi-axial loading measurements of time-dependent material behavior exist in the literature. Therefore, the aim of this study is to investigate the viscoelastic response of rubber-like materials under multi-axial loading using cavity expansion and relaxation tests. The tests were performed on PVA hydrogel specimens. Three hyperelasitc models and one term Prony series were used to characterize the viscoelastic response of the hydrogels. Finite element (FE) simulations were performed to verify the validity of the calibrated material coefficients by reproducing the experimental results. The excellent agreement between the experimental, analytical and numerical data proves the capability of the cavity expansion technique to measure the time-dependent behavior of viscoelastic materials.
Asunto(s)
Alcohol Polivinílico/química , Bioingeniería , Fenómenos Biomecánicos , Elasticidad , Elastómeros/química , Análisis de Elementos Finitos , Hidrogeles/química , Ensayo de Materiales , Estrés Mecánico , ViscosidadRESUMEN
Targeted nanoparticle binding has become a core feature of experimental pharmaceutical product design which enables more efficient payload delivery and enhances medical imaging by accumulating nanoparticles in specific tissues. Environmental remediation and geophysical monitoring encounter similar challenges which may be addressed in part by the adoption of targeted nanoparticle binding strategies. This study illustrates that engineered nanoparticles can bind to crude oil-impacted silica sand, a selective adsorption driven by active targeting based on an amphiphilic polymer coating. This coating strategy resulted in 2â¯mg/kg attachment to clean silica sand compared to 8â¯mg/kg attachment to oil-impacted silica sand. It was also shown that modifying the surface coating influenced the binding behaviour of the engineered nanoparticles - more hydrophobic polymers resulted in increased binding. Successful targeting of Pluronic-coated iron oxide nanoparticles to a crude oil and silica sand mixture was demonstrated through a combined quantitative Orbital Emission Spectroscopy mass analysis supported by Vibrating Scanning Magnetometer magnetometry, and a qualitative X-ray micro-computed tomography (CT) visualization approach. These non-destructive characterization techniques facilitated efficient analysis of nanoparticles in porous medium samples with minimal sample preparation, and in the case of X-Ray CT, illustrated how targeted nanoparticle binding may be used to produce 3-D images of contaminated porous media. This work demonstrated successful implementation of nanoparticle targeted binding toward viscous LNAPL such as crude oil in the presence of a porous medium, a step which opens the door to successful application of targeted delivery technology in environmental remediation and monitoring.
Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Restauración y Remediación Ambiental , Hidrocarburos/química , Nanopartículas/análisis , Petróleo , Nanopartículas/química , Polímeros/química , Porosidad , Dióxido de Silicio , Microtomografía por Rayos XRESUMEN
Biomechanical-based deformable image registration is conducted on the head and neck region. Patient specific 3D finite element models consisting of parotid glands (PG), submandibular glands (SG), tumor, vertebrae (VB), mandible, and external body are used to register pre-treatment MRI to post-treatment MR images to model the dose response using image data of five patients. The images are registered using combinations of vertebrae and mandible alignments, and surface projection of the external body as boundary conditions. In addition, the dose response is simulated by applying a new loading technique in the form of a dose-induced shrinkage using the dose-volume relationship. The dose-induced load is applied as dose-induced shrinkage of the tumor and four salivary glands. The Dice Similarity Coefficient (DSC) is calculated for the four salivary glands, and tumor to calculate the volume overlap of the structures after deformable registration. A substantial improvement in the registration is found by including the dose-induced shrinkage. The greatest registration improvement is found in the four glands where the average DSC increases from 0.53, 0.55, 0.32, and 0.37 to 0.68, 0.68, 0.51, and 0.49 in the left PG, right PG, left SG, and right SG, respectively by using bony alignment of vertebrae and mandible (M), body (B) surface projection and dose (D) (VB+M+B+D).
Asunto(s)
Neoplasias de Cabeza y Cuello/radioterapia , Dosis de Radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Algoritmos , HumanosRESUMEN
PURPOSE: To propose a novel technique to experimentally validate deformable dose algorithms by measuring 3D dose distributions under the condition of deformation using deformable gel dosimeters produced by a novel gel fabrication method. METHOD: Five gel dosimeters, two rigid control gels and three deformable gels, were manufactured and treated with the same conformal plan that prescribed 400 cGy to the isocenter. The control gels were treated statically; the deformable gels were treated while being compressed by an actuation device to simulate breathing motion (amplitude of compression = 1, 1.5, and 2 cm, respectively; frequency = 16 rpm). Comparison between the dose measured by the control gels and the corresponding static dose distribution calculated in the treatment planning system (TPS) has determined the intrinsic dose measurement uncertainty of the gel dosimeters. Doses accumulated using MORFEUS, a biomechanical model-based deformable registration and dose accumulation algorithm, were compared with the doses measured by the deformable gel dosimeters to verify the accuracy of MORFEUS using dose differences at each voxel as well as the gamma index test. Flexible plastic wraps were used to contain and protect the deformable gels from oxygen infiltration, which inhibits the gels' dose sensitizing ability. Since the wraps were imperfect oxygen barrier, dose comparison between MORFEUS and the deformable gels was performed only in the central region with a received dose of 200 cGy or above to exclude the peripheral region where oxygen penetration had likely affected dose measurements. RESULTS: Dose measured with the control gels showed that the intrinsic dose measurement uncertainty of the gel dosimeters was 11.8 cGy or 4.7% compared to the TPS. The absolute mean voxel-by-voxel dose difference between the accumulated dose and the dose measured with the deformable gels was 4.7 cGy (SD = 36.0 cGy) or 1.5% (SD = 13.4%) for the three deformable gels. The absolute mean vector distance between the 250, 300, 350, and 400 cGy isodose surfaces on the accumulated and measured distributions was 1.2 mm (SD < 1.5 mm). The gamma index test that used the dose measurement precision of the control gels as the dose difference criterion and 2 mm as the distance criterion was performed, and the average pass rate of the accumulated dose distributions for all three deformable gels was 92.7%. When the distance criterion was relaxed to 3 mm, the average pass rate increased to 96.9%. CONCLUSION: This study has proposed a novel technique to manufacture deformable volumetric gel dosimeters. By comparing the doses accumulated in MORFEUS and the doses measured with the dosimeters under the condition of deformation, the study has also demonstrated the potential of using deformable gel dosimetry to experimentally validate algorithms that include deformations into dose computation. Since dose less than 200 cGy was not evaluated in this study, future investigations will focus more on low dose regions by either using bigger gel dosimeters or prescribing a lower dose to provide a more complete experimental validation of MORFEUS across a wider dose range.
Asunto(s)
Modelos Biológicos , Radiometría/instrumentación , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional/instrumentación , Simulación por Computador , Módulo de Elasticidad , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/instrumentación , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
Evaluation of imaging for cancer detection and localization can be achieved by correlation of gold-standard histopathology with imaging data. Usage of a 3D biomechanical-based deformable registration for correlation of the histopathology of whole-tissue specimens with ex vivo imaging necessitates measurement of the distribution of biomechanical properties in the ex vivo tissue specimen and changes that occur during pathology fixation. To measure high-resolution 3D distributions of Young's modulus (E) prefixation and postfixation, a quasi-static magnetic resonance elastography method was developed at 7 T. Use of echo-planar imaging allowed for shorter imaging times, in line with limited time frames allowable for pathology specimens. The finite element modeling algorithm produced voxel-wise E measures, and mechanical indentation was used for comparison. An initial preclinical evaluation with canine prostate specimens (n = 5) demonstrated a consistent increase in E with fixation (P < 0.002) by a factor of 4 (± 1). Increases were a function of distance from the tissue edge and correlated with fixation time (ρ = 1, P < 0.02). The technique will be used to generate population-averaged data of E from clinical ex vivo specimens prefixation and postfixation to inform registration of whole-mount histopathology with in vivo imaging.
Asunto(s)
Algoritmos , Diagnóstico por Imagen de Elasticidad/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Próstata/patología , Próstata/fisiología , Fijación del Tejido , Animales , Simulación por Computador , Perros , Módulo de Elasticidad/fisiología , Análisis de Elementos Finitos , Dureza/fisiología , Pruebas de Dureza/métodos , Aumento de la Imagen/métodos , Masculino , Modelos Biológicos , Estimulación Física/métodos , Cambios Post Mortem , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
Both accuracy and efficiency are critical for the implementation of biomechanical model-based deformable registration in clinical practice. The focus of this investigation is to evaluate the potential of improving the efficiency of the deformable image registration of the human lungs without loss of accuracy. Three-dimensional finite element models have been developed using image data of 14 lung cancer patients. Each model consists of two lungs, tumor and external body. Sliding of the lungs inside the chest cavity is modeled using a frictionless surface-based contact model. The effect of the type of element, finite deformation and elasticity on the accuracy and computing time is investigated. Linear and quadrilateral tetrahedral elements are used with linear and nonlinear geometric analysis. Two types of material properties are applied namely: elastic and hyperelastic. The accuracy of each of the four models is examined using a number of anatomical landmarks representing the vessels bifurcation points distributed across the lungs. The registration error is not significantly affected by the element type or linearity of analysis, with an average vector error of around 2.8 mm. The displacement differences between linear and nonlinear analysis methods are calculated for all lungs nodes and a maximum value of 3.6 mm is found in one of the nodes near the entrance of the bronchial tree into the lungs. The 95 percentile of displacement difference ranges between 0.4 and 0.8 mm. However, the time required for the analysis is reduced from 95 min in the quadratic elements nonlinear geometry model to 3.4 min in the linear element linear geometry model. Therefore using linear tetrahedral elements with linear elastic materials and linear geometry is preferable for modeling the breathing motion of lungs for image-guided radiotherapy applications.
Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Pulmón/efectos de la radiación , Fenómenos Mecánicos , Radioterapia Asistida por Computador/métodos , Fenómenos Biomecánicos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/fisiopatología , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Análisis de Elementos Finitos , Humanos , Imagenología Tridimensional , Inhalación , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/fisiopatología , Neoplasias Pulmonares/radioterapia , Modelos Biológicos , Tomografía Computarizada por Rayos XRESUMEN
PURPOSE: To investigate the effect of the bronchial tree on the accuracy of biomechanical-based deformable image registration of human lungs. METHODS: Three dimensional finite element models have been developed using four dimensional computed tomography image data of ten lung cancer patients. Each model is built of a body, left and right lungs, tumor, and bronchial trees. Triangular shell elements are used for the bronchial trees while tetrahedral elements are used for other components. Hyperelastic material properties based on experimental investigation on human lungs are used for the lung parenchyma. Different material properties are assigned for the bronchial tree using five values for the modulus of elasticity of 0.01, 0.12, 0.5, 10, and 18 MPa. Lungs are modeled to slide inside chest cavities by applying frictionless contact surfaces between each lung and corresponding chest cavity. The accuracy of the models is examined using an average of 40 bronchial bifurcation points identified on inhale and exhale images. Relative accuracy is evaluated by comparing the displacement of all nodes within the lungs as well as the dosimetric difference at the exhale position predicted by the model. RESULTS: There is no significant effect of bronchial tree on the model accuracy based on the bifurcation points analysis. However, on the local level, using an average of 38 000 nodes, there is a maximum difference of 8.5 mm in the deformation of the bronchial trees, as the modulus of elasticity of the bronchial trees increases from 0.01 to 18 MPa; however, more than 96% of nodes are within a 2.5 mm difference in each direction. The average dose difference at the predicted exhale position is less than 35 cGy between the models. CONCLUSIONS: The bronchial tree has little effect on the global deformation and the accuracy of deformable image registration of lungs. Hence, the homogenous model is a reasonable assumption. Since there are some local deformation differences between nodes as the material properties of the bronchial tree change that may affect the accuracy of dosimetric results, heterogeneity may be required for a smaller scale modeling of lungs.
Asunto(s)
Bronquios/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Modelos Anatómicos , Fenómenos Biomecánicos , Bronquios/fisiología , Bronquios/efectos de la radiación , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/fisiopatología , Módulo de Elasticidad , Espiración , Análisis de Elementos Finitos , Humanos , Inhalación , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/fisiopatología , Dosis de Radiación , Radiometría , Tomografía Computarizada por Rayos XRESUMEN
Deformable image registration of four head and neck cancer patients has been conducted using a biomechanical-based model. Patient-specific 3D finite element models have been developed using CT and cone-beam CT image data of the planning and a radiation treatment session. The model consists of seven vertebrae (C1 to C7), mandible, larynx, left and right parotid glands, tumor and body. Different combinations of boundary conditions are applied in the model in order to find the configuration with a minimum registration error. Each vertebra in the planning session is individually aligned with its correspondence in the treatment session. Rigid alignment is used for each individual vertebra and the mandible since no deformation is expected in the bones. In addition, the effect of morphological differences in the external body between the two image sessions is investigated. The accuracy of the registration is evaluated using the tumor and both parotid glands by comparing the calculated Dice similarity index of these structures following deformation in relation to their true surface defined in the image of the second session. The registration is improved when the vertebrae and mandible are aligned in the two sessions with the highest average Dice index of 0.86 ± 0.08, 0.84 ± 0.11 and 0.89 ± 0.04 for the tumor, left and right parotid glands, respectively. The accuracy of the center of mass location of tumor and parotid glands is also improved by deformable image registration where the errors in the tumor and parotid glands decrease from 4.0 ± 1.1, 3.4 ± 1.5 and 3.8 ± 0.9 mm using rigid registration to 2.3 ± 1.0, 2.5 ± 0.8 and 2.0 ± 0.9 mm in the deformable image registration when alignment of vertebrae and mandible is conducted in addition to the surface projection of the body.