Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Environ Res ; 244: 117815, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38048865

RESUMEN

Hydrogen has emerged as an alternative energy source to meet the increasing global energy demand, depleting fossil fuels and environmental issues resulting from fossil fuel consumption. Microalgae-based biomass is gaining attention as a potential source of hydrogen production due to its green energy carrier properties, high energy content, and carbon-free combustion. This review examines the hydrogen production process from microalgae, including the microalgae cultivation technological process for biomass production, and the three main routes of biomass-to-hydrogen production: thermochemical conversion, photo biological conversion, and electrochemical conversion. The current progress of technological options in the three main routes is presented, with the various strains of microalgae and operating conditions of the processes. Furthermore, the economic and environmental perspectives of biomass-to-hydrogen from microalgae are evaluated, and critical operational parameters are used to assess the feasibility of scaling up biohydrogen production for commercial industrial-scale applications. The key finding is the thermochemical conversion process is the most feasible process for biohydrogen production, compared to the pyrolysis process. In the photobiological and electrochemical process, pure hydrogen can be achieved, but further process development is required to enhance the production yield. In addition, the high production cost is the main challenge in biohydrogen production. The cost of biohydrogen production for direct bio photolysis it cost around $7.24 kg-1; for indirect bio photolysis it costs around $7.54 kg-1 and for fermentation, it costs around $7.61 kg-1. Therefore, comprehensive studies and efforts are required to make biohydrogen production from microalgae applications more economical in the future.


Asunto(s)
Microalgas , Indicadores Ambientales , Biocombustibles/análisis , Fermentación , Hidrógeno/análisis , Combustibles Fósiles , Biomasa
2.
Chemosphere ; 335: 139007, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37253401

RESUMEN

Industrial revolution on the back of fossil fuels has costed humanity higher temperatures on the planet due to ever-growing concentration of carbon dioxide emissions in Earth's atmosphere. To tackle global warming demand for renewable energy sources continues to increase. Along renewables, there has been a growing interest in converting carbon dioxide to methanol, which can be used as a fuel or a feedstock for producing chemicals. The current review study provides a comprehensive overview of the recent advancements, challenges and future prospects of methanol production and purification via membrane-based technology. Traditional downstream processes for methanol production such as distillation and absorption have several drawbacks, including high energy consumption and environmental concerns. In comparison to conventional technologies, membrane-based separation techniques have emerged as a promising alternative for producing and purifying methanol. The review highlights recent developments in membrane-based methanol production and purification technology, including using novel membrane materials such as ceramic, polymeric and mixed matrix membranes. Integrating photocatalytic processes with membrane separation has been investigated to improve the conversion of carbon dioxide to methanol. Despite the potential benefits of membrane-based systems, several challenges need to be addressed. Membrane fouling and scaling are significant issues that can reduce the efficiency and lifespan of the membranes. The cost-effectiveness of membrane-based systems compared to traditional methods is a critical consideration that must be evaluated. In conclusion, the review provides insights into the current state of membrane-based technology for methanol production and purification and identifies areas for future research. The development of high-performance membranes and the optimization of membrane-based processes are crucial for improving the efficiency and cost-effectiveness of this technology and for advancing the goal of sustainable energy production.


Asunto(s)
Dióxido de Carbono , Metanol , Combustibles Fósiles , Tecnología , Calentamiento Global
3.
ACS Sustain Chem Eng ; 10(37): 12433-12447, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36161095

RESUMEN

Plastic and biomass waste pose a serious environmental risk; thus, herein, we mixed biomass waste with plastic bottle waste (PET) to produce char composite materials for producing a magnetic char composite for better separation when used in water treatment applications. This study also calculated the life cycle environmental impacts of the preparation of adsorbent material for 11 different indicator categories. For 1 functional unit (1 kg of pomace leaves as feedstock), abiotic depletion of fossil fuels and global warming potential were quantified as 7.17 MJ and 0.63 kg CO2 equiv for production of magnetic char composite materials. The magnetic char composite material (MPBC) was then used to remove crystal violet dye from its aqueous solution under various operational parameters. The kinetics and isotherm statistical theories showed that the sorption of CV dye onto MPBC was governed by pseudo-second-order, and Langmuir models, respectively. The quantitative assessment of sorption capacity clarifies that the produced MPBC exhibited an admirable ability of 256.41 mg g-1. Meanwhile, the recyclability of 92.4% of MPBC was demonstrated after 5 adsorption/desorption cycles. Findings from this study will inspire more sustainable and cost-effective production of magnetic sorbents, including those derived from combined plastic and biomass waste streams.

4.
Chemosphere ; 303(Pt 2): 135138, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35636597

RESUMEN

Green nano-technology together with the availability of eco-friendly and alternative sources are the promising candidates to combat environment deteriorations and energy clutches globally. The current work focuses on the synthesis and application of newly synthesized nano catalyst of Iodine doped Potassium oxide I (K2O) for producing sustainable biodiesel from novel non-edible seed oils of Coronopus didymus L. using membrane based contactor to avoid emulsification and phase separation issues. Highest biodiesel yield (97.03%) was obtained under optimum conditions of 12:1 methanol to oil ratio, reaction temperature of 65 °C for 150 min with the 1.0 wt% catalyst concentration. The lately synthesized, environment friendly and recyclable Iodine doped Potassium oxide K (IO)2 catalyst was synthesized via chemical method followed by characterization via advanced techniques including EDX, XRD, FTIR and SEM analysis. The catalyst was proved to be stable and efficient with the reusability of five times in transesterification reaction. These analysis have reported the sustainability, stability and good quality of biodiesel from seed oil of Coronopus didymus L. using efficient Iodine doped potassium oxide catalyst. Thus, non-edible, environment friendly and novel Coronopus didymus L. seeds and their extracted oil along with Iodine doped potassium oxide catalyst seems to be highly affective, sustainable and better alternative source to the future biodiesel industry. Also, by altering the reaction equilibrium and lowering the purification phases of the process, these studies show the potential of coupling transesterification and a membrane contactor.


Asunto(s)
Biocombustibles , Yodo , Biocombustibles/análisis , Catálisis , Esterificación , Yoduros , Óxidos , Aceites de Plantas/química , Compuestos de Potasio
5.
Adv Sci (Weinh) ; 9(16): e2105603, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35384377

RESUMEN

Porous boron carbon nitride (BCN) is one of the exciting systems with unique electrochemical and adsorption properties. However, the synthesis of low-cost and porous BCN with tunable porosity is challenging, limiting its full potential in a variety of applications. Herein, the preparation of well-defined mesoporous boron carbon nitride (MBCN) with high specific surface area, tunable pores, and nitrogen contents is demonstrated through a simple integration of chemical polymerization of readily available sucrose and borane ammonia complex (BAC) through the nano-hard-templating approach. The bimodal pores are introduced in MBCN by controlling the self-organization of BAC and sucrose molecules within the nanochannels of the template. It is found that the optimized sample shows a high specific capacitance (296 F g-1 at 0.5 A g-1 ), large specific capacity for sodium-ion battery (349 mAg h-1 at 50 mAh g-1 ), and excellent CO2 adsorption capacity (27.14 mmol g-1 at 30 bar). Density functional theory calculations demonstrate that different adsorption sites (BC, BN, CN, and CC) and the large specific surface area strongly support the high adsorption capacity. This finding offers an innovative breakthrough in the design and development of MBCN nanostructures for energy storage and carbon capture applications.

6.
J Environ Manage ; 304: 114319, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35021592

RESUMEN

Prunus Armeniaca seed (PAS) oil was utilised as a waste biomass feedstock for biodiesel production via a novel catalytic system (SrO-La2O3) based on different stoichiometric ratios. The catalysts have been characterised and followed by a parametric analysis to optimise catalyst results. The catalyst with a stoichiometric ratio of Sr: La-8 (Sr-La-C) using parametric analysis showed an optimum yield of methyl esters is 97.28% at 65 °C, reaction time 75 min, catalyst loading 3 wt% and methanol to oil molar ratio of 9. The optimum catalyst was tested using various oil feedstocks such as waste cooking oil, sunflower oil, PAS oil, date seed oil and animal fat. The life cycle assessment was performed to evaluate the environmental impacts of biodiesel production utilising waste PAS, considering 1000 kg of biodiesel produced as 1 functional unit. The recorded results showed the cumulative abiotic depletion of fossil resources over the entire biodiesel production process as 22,920 MJ, global warming potential as 1150 kg CO2 equivalent, acidification potential as 4.89 kg SO2 equivalent and eutrophication potential as 0.2 kg PO43- equivalent for 1 tonne (1000 kg) of biodiesel produced. Furthermore, the energy ratio (measured as output energy divided by input energy) for the entire production process was 1.97. These results demonstrated that biodiesel obtained from the valorisation of waste PAS provides a suitable alternative to fossil fuels.


Asunto(s)
Biocombustibles , Prunus armeniaca , Animales , Catálisis , Estadios del Ciclo de Vida , Aceites de Plantas
7.
Environ Pollut ; 296: 118726, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34953948

RESUMEN

Engineered nanomaterials (ENMs) are at the forefront of many technological breakthroughs in science and engineering. The extensive use of ENMs in several consumer products has resulted in their release to the aquatic environment. ENMs entering the aquatic ecosystem undergo a dynamic transformation as they interact with organic and inorganic constituents present in aquatic environment, specifically abiotic factors such as NOM and clay minerals, and attain an environmental identity. Thus, a greater understanding of ENM-abiotic factors interactions is required for an improved risk assessment and sustainable management of ENMs contamination in the aquatic environment. This review integrates fundamental aspects of ENMs transformation in aquatic environment as impacted by abiotic factors, and delineates the recent advances in bioavailability and ecotoxicity of ENMs in relation to risk assessment for ENMs-contaminated aquatic ecosystem. It specifically discusses the mechanism of transformation of different ENMs (metals, metal oxides and carbon based nanomaterials) following their interaction with the two most common abiotic factors NOM and clay minerals present within the aquatic ecosystem. The review critically discusses the impact of these mechanisms on the altered ecotoxicity of ENMs including the impact of such transformation at the genomic level. Finally, it identifies the gaps in our current understanding of the role of abiotic factors on the transformation of ENMs and paves the way for the future research areas.


Asunto(s)
Ecosistema , Nanoestructuras , Metales , Nanoestructuras/toxicidad
8.
Molecules ; 26(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34641316

RESUMEN

Waste eggshells were considered for synthesising a precursor (CaO) for a heterogeneous catalyst, further impregnated by alkali caesium oxide (Cs2O). The following techniques were used to characterise the synthesised catalysts: X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and Temperature Programmed Desorption (CO2-TPD). The synthesised catalyst revealed its suitability for transesterification to produce biodiesel. The biodiesel production process was optimised, and it showed that the optimal biodiesel yield is 93.59%. The optimal set of process parameters is process temperature 80 °C, process time 90 min, methanol-to-oil molar ratio 8 and catalyst loading 3 wt.%. It has been found that the high basicity of the catalyst tends to give a high biodiesel yield at low methanol-to-oil ratio 8 when the reaction time is also less (90 min). The fuel properties of biodiesel also satisfied the standard limits defined by ASTM and the EN standards. Thus, the synthesised catalyst from waste eggshells is highly active, improved the biodiesel production conditions and PPSS oil is a potential nonedible source.


Asunto(s)
Biocombustibles , Ésteres/química , Millettia/química , Catálisis , Cesio/química , Fuentes Generadoras de Energía , Óxidos/química , Semillas/química
9.
Angew Chem Int Ed Engl ; 60(39): 21242-21249, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34378296

RESUMEN

Mesoporous carbon nitrides with C3 N5 and C3 N6 stoichiometries created a new momentum in the field of organic metal-free semiconductors owing to their unique band structures and high basicity. Here, we report on the preparation of a novel graphitic microporous carbon nitride with a tetrazine based chemical structure and the composition of C3 N5.4 using ultra-stable Y zeolite as the template and aminoguanidine hydrochloride, a high nitrogen-containing molecule, as the CN precursor. Spectroscopic characterization and density functional theory calculations reveal that the prepared material exhibits a new molecular structure, which comprises two tetrazines and one triazine rings in the unit cell and is thermodynamically stable. The resultant carbon nitride shows an outstanding surface area of 130.4 m2 g-1 and demonstrates excellent CO2 adsorption per unit surface area of 47.54 µmol m-2 , which is due to the existence of abundant free NH2 groups, basic sites and microporosity. The material also exhibits highly selective sensing over water molecules (151.1 mmol g-1 ) and aliphatic hydrocarbons due to its unique microporous structure with a high amount of hydrophilic nitrogen moieties and recognizing ability towards small molecules.

10.
J Nanosci Nanotechnol ; 21(3): 1483-1492, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33404411

RESUMEN

We report on the synthesis of 3D mesoporous fullerene/carbon hybrid materials with ordered porous structure and high surface area by mixing the solution of fullerene and sucrose molecules in the nanochannels of 3D mesoporous silica, KIT-6 via nanotemplating approach. The addition of sucrose molecules in the synthesis offers a thin layer of carbon between the fullerene molecules which enhances not only the specific surface area and the specific pore volume but also the conductivity of the hybrid materials. The prepared hybrids exhibit 3D mesoporous structure and show a much higher specific surface area than that of the pure mesoporous fullerene. The hybrids materials are used as the electrodes for supercapacitor and Li-ion battery applications. The optimised hybrid sample shows an excellent rate capability and a high specific capacitance of 254 F/g at the current density of 0.5 A/g, which is much higher than that of the pure mesoporous fullerene, mesoporous carbon, activated carbon and multiwalled carbon nanotubes. When used as the electrode for Li-ion battery, the sample delivers the largest specific capacity of 1067 mAh/g upon 50 cycles at the current density of 0.1 A/g with stability. These results reveal that the addition of carbon in the mesoporous fullerene with 3D structure makes a significant impact on the electrochemical properties of the hybrid samples, demonstrating their potential for applications in Li-ion battery and supercapacitor devices.

11.
Sci Rep ; 10(1): 15719, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973335

RESUMEN

Food waste is a major constituent in municipal solid wastes and its accumulation or disposal of in landfills is problematic, causing environmental issues. Herein, a techno-economic study is carried out on the potential of biogas production from different types of food waste generated locally. The biogas production tests were at two-time sets; 24-h and 21-day intervals and results showed a good correlation between those two-time sets. Thus, we propose to use the 24-h time set to evaluate feedstock fermentation capacity that is intended for longer periods. Our approach could potentially be applied within industry as the 24-h test can give a good indication of the potential substrate gas production as a quick test that saves time, with minimal effort required. Furthermore, polynomial models were used to predict the production of total gas and methane during the fermentation periods, which showed good matching between the theoretical and practical values with a coefficient of determination R2 = 0.99. At day 21, the accumulative gas production value from mixed food waste samples was 1550 mL per 1 g of dry matter. An economic evaluation was conducted and showed that the case study breaks-even at $0.2944 per cubic metre. Any prices above this rate yield a positive net present value (NPV); at $0.39/m3 a discounted payback period of six years and a positive NPV of $3108 were calculated. If waste management fee savings are to be incorporated, the total savings would be higher, increasing annual cash flows and enhancing financial results. This economic evaluation serves as a preliminary guide to assess the economic feasibility based on the fluctuating value of methane when producing biogas from food waste via anaerobic digestion, thus could help biogas project developers investigate similar scale scenarios .

12.
Chem Asian J ; 15(17): 2588-2621, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32613753

RESUMEN

Organo-functionalized materials with porous structure offer unique adsorption, catalytic and sensing properties. These unique properties make them available for various applications, including catalysis, CO2 capture and utilization, and drug delivery. The properties and the performance of these unique materials can be altered with suitable modifications on their surface. In this review, we summarize the recent advances in the preparation and applications of organo-functionalized porous materials with different structures. Initially, a brief historical overview of functionalized porous materials is presented, and the subsequent sections discuss the recent developments and applications of various functional porous materials. In particular, the focus is given on the various methods used for the preparation of organo-functionalized materials and their important roles in the heterogenization of homogeneous catalysts. A special emphasis is also given on the applications of these functionalized porous materials for catalysis, CO2 capture and drug delivery.

13.
Sci Rep ; 10(1): 2563, 2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-32054919

RESUMEN

Herein, value-added materials such as activated carbon and carbon nanotubes were synthesized from low-value Miscanthus × giganteus lignocellulosic biomass. A significant drawback of using Miscanthus in an energy application is the melting during the combustion due to its high alkali silicate content. An application of an alternative approach was proposed herein for synthesis of activated carbon from Miscanthus × giganteus, where the produced activated carbon possessed a high surface area and pore volume of 0.92 cm3.g-1 after two activation steps using phosphoric acid and potassium hydroxide. The SBET of the raw biomass, after first activation and second activation methods showed 17, 1142 and 1368 m2.g-1, respectively. Transforming this otherwise waste material into a useful product where its material properties can be utilized is an example of promoting the circular economy by valorising waste lignocellulosic biomass to widely sought-after high surface area activated carbon and subsequently, unconventional multi-walled carbon nanotubes. This was achieved when the activated carbon produced was mixed with nitrogen-based material and iron precursor, where it produced hydrophilic multi-wall carbon nanotubes with a contact angle of θ = 9.88°, compared to the raw biomass. synthesised materials were tested in heavy metal removal tests using a lead solution, where the maximum lead absorption was observed for sample AC-K, with a 90% removal capacity after the first hour of testing. The synthesis of these up-cycled materials can have potential opportunities in the areas of wastewater treatment or other activated carbon/carbon nanotube end uses with a rapid cycle time.

14.
Adv Mater ; 32(18): e1904635, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31608512

RESUMEN

Carbon nitride (CN), a 2D material composed of only carbon (C) and nitrogen (N), which are linked by strong covalent bonds, has been used as a metal-devoid and visible-light-active photocatalyst owing to its magnificent optoelectronic and physicochemical properties including suitable bandgap, adjustable energy-band positions, tailor-made surface functionalities, low cost, metal-free nature, and high thermal, chemical, and mechanical stabilities. CN-based materials possess a lot of advantages over conventional metal-based inorganic photocatalysts including ease of synthesis and processing, versatile functionalization or doping, flexibility for surface engineering, low cost, sustainability, and recyclability without any leaching of toxic metals from photocorrosion. Carbon nitrides and their hybrid materials have emerged as attractive candidates for CO2 capture and its reduction into clean and green low-carbon fuels and valuable chemical feedstock by using sustainable and intermittent renewable energy sources of sunlight and electricity through the heterogeneous photo(electro)catalysis. Here, the latest research results in this field are summarized, including implementation of novel functionalized nanostructured CNs and their hybrid heterostructures in meeting the stringent requirements to raise the efficiency of the CO2 reduction process by using state-of-the-art photocatalysis, electrocatalysis, photoelectrocatalysis, and feedstock reactions. The research in this field is primarily focused on advancement in the synthesis of nanostructured and functionalized CN-based hybrid heterostructured materials. More importantly, the recent past has seen a surge in studies focusing significantly on exploring the mechanism of their application perspectives, which include the behavior of the materials for the absorption of light, charge separation, and pathways for the transport of CO2 during the reduction process.

15.
Small ; 16(12): e1903937, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31647612

RESUMEN

Developing a highly active, stable, and efficient non-noble metal-free functional electrocatalyst to supplant the benchmark Pt/C-based catalysts in practical fuel cell applications remains a stupendous challenge. A rational strategy is developed to directly anchor highly active and dispersed copper (Cu) nanospecies on mesoporous fullerenes (referred to as Cu-MFC60 ) toward enhancing oxygen reduction reaction (ORR) electrocatalysis. The preparation of Cu-MFC60 involves i) the synthesis of ordered MFC60 via the prevalent nanohard templating technique and ii) the postfunctionalization of MFC60 with finely distributed Cu nanospecies through incipient wet impregnation. The concurrence of Cu and cuprous oxide nanoparticles in the as-developed Cu-MFC60 samples through relevant material characterizations is affirmed. The optimized ORR catalyst, Cu(15%)-MFC60 , exhibits superior electrocatalytic ORR characteristics with an onset potential of 0.860 vs reversible hydrogen electrode, diffusion-limiting current density (-5.183 mA cm-2 ), improved stability, and tolerance to methanol crossover along with a high selectivity (four-electron transfer). This enhanced ORR performance can be attributed to the rapid mass transfer and abundant active sites owing to the synergistic coupling effects arising from the mixed copper nanospecies and the fullerene framework.

16.
Environ Sci Pollut Res Int ; 26(36): 37228-37241, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31745803

RESUMEN

Herein, activated carbon (AC) and carbon nanotubes (CNTs) were synthesised from potato peel waste (PPW). Different ACs were synthesised via two activation steps: firstly, with phosphoric acid (designated PP) and then using potassium hydroxide (designated PK). The AC produced after the two activation steps showed a surface area as high as 833 m2 g-1 with a pore volume of 0.44 cm3 g-1, where the raw material of PPW showed a surface area < 4 m2 g-1. This can help aid and facilitate the concept of the circular economy by effectively up-cycling and valorising waste lignocellulosic biomass such as potato peel waste to high surface area AC and subsequently, multi-walled carbon nanotubes (MWCNTs). Consequently, MWCNTs were prepared from the produced AC by mixing it with the nitrogen-based material melamine and iron precursor, iron (III) oxalate hexahydrate. This produced hydrophilic multi-wall carbon nanotubes (MWCNTs) with a water contact angle of θ = 14.97 °. Both AC and CNT materials were used in heavy metal removal (HMR) where the maximum lead absorption was observed for sample PK with a 84% removal capacity after the first hour of testing. This result signifies that the synthesis of these up-cycled materials can have applications in areas such as wastewater treatment or other conventional AC/CNT end uses with a rapid cycle time in a two-fold approach to improve the eco-friendly synthesis of such value-added products and the circular economy from a significant waste stream, i.e., PPW. Graphical abstract .


Asunto(s)
Carbón Orgánico/química , Metales Pesados/química , Nanotubos de Carbono/química , Solanum tuberosum , Biomasa , Hidróxidos , Metales Pesados/análisis , Compuestos de Potasio , Residuos
17.
Bioresour Technol ; 282: 163-170, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30861445

RESUMEN

In this study, three semi-pilot scale systems (vertical flow constructed wetland, multi-soil layering, and integrated hybrid systems) for treating real rice noodle wastewater were operated parallelly for the first time in a tropical climate at a loading rate of 50 L/(m2·d) for more than 7 months to determine the optimal conditions and to compare their treatment performance. The results demonstrated that these systems were appropriate for the removal of organics, suspended solids, and total coliform (Tcol). The highest reductions in chemical oxygen demand (CODCr, 73.2%), phosphorus (PO4-P, 54%), and Tcol (4.78 log MPN/100 mL inactivation) were obtained by the integrated hybrid system, while the highest removal efficiencies of ammonium (NH4-N, 60.64%) and suspended solids (80.49%) were achieved in the vertical-flow-constructed wetland and multi-soil layering systems respectively.


Asunto(s)
Oryza/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Compuestos de Amonio/metabolismo , Análisis de la Demanda Biológica de Oxígeno , Industria de Alimentos , Fósforo/metabolismo , Proyectos Piloto , Suelo , Humedales
18.
Bioresour Technol ; 279: 156-165, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30716608

RESUMEN

In this study, fragmentation of anaerobic granules (AG) was carried out by low intensity sonification (LIS) to release its extracellular polymeric substance (EPS). The experimental outcome of the study shows that 30 s treatment time and 60 W sonic power was effective for fragmentation of AG. The fragmented anaerobic granules were further subjected to pretreatment by biosurfactant secreting bacteria. Bacterial pretreatment achieves a maximum biogranules lysis of 20.3% and biosolids reduction of 17.1% for fragmented anaerobic granules bacterial pretreatment (FAG-BP). Whereas for bacterial pretreatment (BP) alone, it achieves 10.9% and 8.6% of biogranules lysis and biosolids reduction respectively. Exponential first order kinetic model of biomethane production data revealed greater biomethane production for FAG-BP (0.247 g COD/g COD) than BP (0.131 g COD/g COD). Cost analysis of FAG mediated bacterial pretreatment results in a net profit of 48.606 USD/Ton.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas/química , Anaerobiosis , Bacterias , Cinética , Aguas del Alcantarillado/microbiología
19.
Bioresour Technol ; 277: 62-67, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30658337

RESUMEN

In this study, an attempt was made to enhance the biomethanation potential of seagrass (Syringodium isoetifolium) by the aid of disperser-tenside (polysorbate 80) disintegration for the first time in literature. A disperser rpm of 10,000 for 20 min and PS 80 dose of 0.000864 g/g TS were selected as ideal parameters for effectual seagrass biomass disintegration. Dispersion aided tenside disintegration (DTD) with a disperser energy consumption of 349 kJ/kg TS, was observed to be efficacious with a biomass lysis rate of 25.6%. The impact of DTD on bioacidification and biomethanation assay with respect to volatile fatty acids concentration (1100 mg/L) and methane generation (0.256 g/g COD), was greater than dispersion disintegration (DD) (800 mg/L; 0.198 g/g COD). Thus, S. isoetifolium is considered as a promising substrate to attain the third generation biofuel goals in the near future.


Asunto(s)
Alismatales/metabolismo , Metano/biosíntesis , Tensoactivos/farmacología , Alismatales/efectos de los fármacos , Biomasa , Ácidos Grasos Volátiles/biosíntesis , Cinética
20.
J Environ Manage ; 231: 1164-1175, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30602241

RESUMEN

Rational designing of metal-free carbon nitride based photocatalysts can lead to an excellent optical response and a higher photocatalytic activity driven by visible and solar light. This combines green photocatalytic technology with greener materials prepared by facile approaches for environmental remediation. Herein we report utilization of star photocatalyst g-C3N4 (CN) to form highly efficient hetero-assemblies along with acidified g-C3N4 (ACN), polyaniline (PANI), reduced graphene oxide (RGO) and biochar. By use of these organic semiconductors we synthesize g-C3N4/ACN/RGO@Biochar (GARB), g-C3N4/PANI/RGO@Biochar (GPRB) and ACN/PANI/RGO@Biochar (APRB) nano-assemblies with different optical response and band edge positions for a better charge flow and reduced recombination of carriers. These synthesized catalysts were used for visible light powered degradation of 2,4-Dichlorophenoxy acetic acid (2,4-D) and ibuprofen (IBN). APRB performs the best and degrades 99.7% and 98.4% of 2,4-D and IBN (20 mg L-1) under Xe lamp exposure in 50 min and retention of high activity in natural sunlight. Optical analysis, photoelectrochemical response and radical quenching studies show both hydroxyl and superoxide radical anions as major reactive species and a Z-scheme photocatalytic mechanism. RGO acts as an electron mediator and protects higher positioned bands of PANI and ACN in APRB for a remarkable photocatalytic activity for a metal free material. The degradation pathway was analyzed by LC-MS analysis and 42% and 40% total organic carbon was removed in 2 h for 2,4-D and IBN degradation respectively. The toxicity of degraded products was analyzed by analyzing viability of human peripheral blood cells with retaining of 99.1% cells.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Ácido 2,4-Diclorofenoxiacético , Carbón Orgánico , Ibuprofeno , Nitrilos , Fotólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA