Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Acta Pol Pharm ; 74(3): 969-981, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-29513967

RESUMEN

Development of orodispersible delivery system of high mechanical properties and low disintegration time is a big challenge. The aim of the current work was to assess and optimize the high shear granulation process as a new methodology for development of orodispersible tablets of high quality attributes using design of experiment approach. A two factor, three levels (32), full factorial design was carried out to investigate the main and interaction effects of independent variables, water amount (XI) and granulation time (X2) on the characteristics of granules and final product, tablet. The produced granules were analyzed for their granule size, density and flowability. Furthermore, the produced tablets were tested for: weight variation, breaking force/ crushing strength, friability, disintegration time and drug dissolution. Regression analysis results of multiple linear models showed a high correlation between the adjusted R-squared and predicted R-squared for all granules and tablets characteristics, the difference is less than 0.2. All dependent responses of granules and tablets were found to be impacted significantly (p < 0.05) by the two independent variables. However, water amount demonstrated the most dominant effect for all granules and tablet characteristics as shown by higher its coefficient estimate for all selected responses. Numerical optimization using desirability function was performed to optimize the variables under study to provide orodispersible system within the USP limit with respect of mechanical properties and disintegration time. It was found that the higher desirability (0.915) could be attained at the low level pf water (180 g) and short granulation time (1.65 min). Eventually, this study provides the formulator with helpful information in selecting the proper level of water and granulation time to provide an orodispersible system of high crushing strength and very low disintegration time, when high shear granulation methodology was used as a method of manufacture.


Asunto(s)
Amoxapina/química , Antidepresivos de Segunda Generación/química , Tecnología Farmacéutica/métodos , Administración Oral , Amoxapina/administración & dosificación , Antidepresivos de Segunda Generación/administración & dosificación , Composición de Medicamentos , Liberación de Fármacos , Cinética , Modelos Químicos , Modelos Estadísticos , Tamaño de la Partícula , Solubilidad , Comprimidos , Agua/química
2.
Acta Pol Pharm ; 74(1): 235-248, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29474779

RESUMEN

Application of quality by design (QbD) in high shear granulation process is critical and need to recognize the correlation between the granulation process parameters and the properties of intermediate (granules) and corresponding final product (tablets). The present work examined the influence of water amount (X,) and wet massing time (X2) as independent process variables on the critical quality attributes of granules and corresponding tablets using design of experiment (DoE) technique. A two factor, three level (32) full factorial design was performed; each of these variables was investigated at three levels to characterize their strength and interaction. The dried granules have been analyzed for their size distribution, density and flow pattern. Additionally, the produced tablets have been investigated for weight uniformity, crushing strength, friability and percent capping, disintegration time and drug dissolution. Statistically significant impact (p < 0.05) of water amount was identified for granule growth, percent fines and distribution width and flow behavior. Granule density and compressibility were found to be significantly influenced (p < 0.05) by the two operating conditions. Also, water amount has significant effect (p < 0.05) on tablet weight unifornity, friability and percent capping. Moreover, tablet disintegration time and drug dissolution appears to be significantly influenced (p < 0.05) by the two process variables. On the other hand, the relationship of process parameters with critical quality attributes of granule and final product tablet was identified and correlated. Ultimately, a judicious selection of process parameters in high shear granulation process will allow providing product of desirable quality.


Asunto(s)
Acetaminofén , Comprimidos , Tecnología Farmacéutica , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA