Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Molecules ; 26(4)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557107

RESUMEN

Magnetite (Fe3O4) nanoparticles were synthesized using the chemical coprecipitation method. Several nanoparticle samples were synthesized by varying the concentration of iron salt precursors in the solution for the synthesis. Two batches of nanoparticles with average sizes of 10.2 nm and 12.2 nm with nearly similar particle-size distributions were investigated. The average particle sizes were determined from the XRD patterns and TEM images. For each batch, several samples with different particle concentrations were prepared. Morphological analysis of the samples was performed using TEM. The phase and structure of the particles of each batch were studied using XRD, selected area electron diffraction (SAED), Raman and XPS spectroscopy. Magnetic hysteresis loops were obtained using a Lakeshore vibrating sample magnetometer (VSM) at room temperature. In the two batches, the particles were found to be of the same pure crystalline phase of magnetite. The effects of particle size, size distribution, and concentration on the magnetic properties and magneto thermic efficiency were investigated. Heating profiles, under an alternating magnetic field, were obtained for the two batches of nanoparticles with frequencies 765.85, 634.45, 491.10, 390.25, 349.20, 306.65, and 166.00 kHz and field amplitudes of 100, 200, 250, 300 and 350 G. The specific absorption rate (SAR) values for the particles of size 12.2 nm are higher than those for the particles of size 10.2 nm at all concentrations and field parameters. SAR decreases with the increase of particle concentration. SAR obtained for all the particle concentrations of the two batches increases almost linearly with the field frequency (at fixed field strength) and nonlinearly with the field amplitude (at fixed field frequency). SAR value obtained for magnetite nanoparticles with the highest magnetization is 145.84 W/g at 765.85 kHz and 350 G, whereas the SAR value of the particles with the least magnetization is 81.67 W/g at the same field and frequency.


Asunto(s)
Nanopartículas de Magnetita/química , Tamaño de la Partícula , Temperatura
2.
Int J Mol Sci ; 20(13)2019 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-31323967

RESUMEN

The study presented in this work consists of two parts: The first part is the synthesis of Graphene oxide-Fe3O4 nanocomposites by a mechanochemical method which, is a mechanical process that is likely to yield extremely heterogeneous particles. The second part includes a study on the efficacy of these Graphene oxide-Fe3O4 nanocomposites to kill cancerous cells. Iron powder, ball milled along with graphene oxide in a toluene medium, underwent a controlled oxidation process. Different phases of GO-Fe3O4 nanocomposites were obtained based on the composition used for milling. As synthesized nanocomposites were characterized by x-ray diffraction (XRD), alternating magnetic field (AFM), Raman spectroscopy, and a vibrating sample magnetometer (VSM). Additionally, the magnetic properties required to obtain high SAR values (Specific Absorption Rate-Power absorbed per unit mass of the magnetic nanocomposite in the presence of an applied magnetic field) for the composite were optimized by varying the milling time. Nanocomposites milled for different extents of time have shown differential behavior for magneto thermic heating. The magnetic composites synthesized by the ball milled method were able to retain the functional groups of graphene oxide. The efficacy of the magnetic nanocomposites for killing of cancerous cells is studied in vitro using HeLa cells in the presence of an AC (Alternating Current) magnetic field. The morphology of the HeLa cells subjected to 10 min of AC magnetic field changed considerably, indicating the death of the cells.


Asunto(s)
Óxido Ferrosoférrico/química , Grafito/química , Nanocompuestos/química , Fiebre , Células HeLa , Humanos , Microscopía de Fuerza Atómica , Microscopía Confocal , Oxidación-Reducción , Espectrometría Raman , Difracción de Rayos X
3.
Environ Sci Pollut Res Int ; 24(24): 19835-19851, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28685343

RESUMEN

Inductively coupled plasma emission spectroscopy was used to measure the concentrations of heavy metals in 58 samples collected from the Barakah nuclear power plant (BNPP) area, UAE. The grain size distribution was symmetric, but the samples ranged from fine to coarse sand. The inverse relationship between grain size and heavy metal contaminations was validated. The pre-operational average heavy metal contaminations around the BNPP were 0.03, 0.40, 1.2, 2.05, 1.66, 1.6, 5.9, 7.3, 7, 8.8, 60, and 2521 ppm for Cd, Mo, Co, Cu, Pb, As, Zn, Ni, V, Cr, Mn, and Fe, respectively. The spatial distribution was more compact in the south compared to the north, with less severe contaminations in the east and west. The negative geoaccumulation indices suggest an uncontaminated area, and the BNPP has minor enrichments. All concentrations were significantly below the safe limits set by the Dutch guidelines. The levels of heavy metals reported in the UAE were lower than levels reported in countries around the world.


Asunto(s)
Metales Pesados/análisis , Plantas de Energía Nuclear , Monitoreo del Ambiente/métodos , Emiratos Árabes Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA