Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Clin Cancer Res ; 30(7): 1409-1421, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37939112

RESUMEN

PURPOSE: Our goal was to demonstrate that lymphatic drainage fluid (lymph) has improved sensitivity in quantifying postoperative minimal residual disease (MRD) in locally advanced human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OPSCC) compared with plasma, and leverage this novel biofluid for patient risk stratification. EXPERIMENTAL DESIGN: We prospectively collected lymph samples from neck drains of 106 patients with HPV (+) OPSCC, along with 67 matched plasma samples, 24 hours after surgery. PCR and next-generation sequencing were used to quantify cancer-associated cell-free HPV (cf-HPV) and tumor-informed variants in lymph and plasma. Next, lymph cf-HPV and variants were compared with TNM stage, extranodal extension (ENE), and composite definitions of high-risk pathology. We then created a machine learning model, informed by lymph MRD and clinicopathologic features, to compare with progression-free survival (PFS). RESULTS: Postoperative lymph was enriched with cf-HPV compared with plasma (P < 0.0001) and correlated with pN2 stage (P = 0.003), ENE (P < 0.0001), and trial-defined pathologic risk criteria (mean AUC = 0.78). In addition, the lymph mutation number and variant allele frequency were higher in pN2 ENE (+) necks than in pN1 ENE (+) (P = 0.03, P = 0.02) or pN0-N1 ENE (-) (P = 0.04, P = 0.03, respectively). The lymph MRD-informed risk model demonstrated inferior PFS in high-risk patients (AUC = 0.96, P < 0.0001). CONCLUSIONS: Variant and cf-HPV quantification, performed in 24-hour postoperative lymph samples, reflects single- and multifeature high-risk pathologic criteria. Incorporating lymphatic MRD and clinicopathologic feature analysis can stratify PFS early after surgery in patients with HPV (+) head and neck cancer. See related commentary by Shannon and Iyer, p. 1223.


Asunto(s)
Neoplasias de Cabeza y Cuello , Neoplasias Orofaríngeas , Infecciones por Papillomavirus , Humanos , Virus del Papiloma Humano , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/diagnóstico , Infecciones por Papillomavirus/cirugía , Neoplasia Residual/patología , Pronóstico , Estadificación de Neoplasias , Neoplasias Orofaríngeas/diagnóstico , Neoplasias Orofaríngeas/cirugía , Neoplasias Orofaríngeas/patología , Neoplasias de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/diagnóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/cirugía , Estudios Retrospectivos
2.
medRxiv ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38077092

RESUMEN

Metastatic castration-resistant prostate cancer (mCRPC) resistant to androgen receptor (AR)-targeted agents is often lethal. Unfortunately, biomarkers for this deadly disease remain under investigation, and underpinning mechanisms are ill-understood. Here, we applied deep sequencing to ∼100 mCRPC patients prior to the initiation of first-line AR-targeted therapy, which detected AR /enhancer alterations in over a third of patients, which correlated with lethality. To delve into the mechanism underlying why these patients with cell-free AR /enhancer alterations developed more lethal prostate cancer, we next performed genome-wide cell-free DNA epigenomics. Strikingly, we found that binding sites for transcription factors associated with developmental stemness were nucleosomally more accessible. These results were corroborated using cell-free DNA methylation data, as well as tumor RNA sequencing from a held-out cohort of mCRPC patients. Thus, we validated the importance of AR /enhancer alterations as a prognostic biomarker in lethal mCRPC, and showed that the underlying mechanism for lethality involves reprogramming developmental states toward increased stemness.

3.
NPJ Precis Oncol ; 7(1): 6, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658307

RESUMEN

Circulating tumor DNA (ctDNA) sensitivity remains subpar for molecular residual disease (MRD) detection in bladder cancer patients. To remedy this problem, we focused on the biofluid most proximal to the disease, urine, and analyzed urine tumor DNA in 74 localized bladder cancer patients. We integrated ultra-low-pass whole genome sequencing (ULP-WGS) with urine cancer personalized profiling by deep sequencing (uCAPP-Seq) to achieve sensitive MRD detection and predict overall survival. Variant allele frequency, inferred tumor mutational burden, and copy number-derived tumor fraction levels in urine cell-free DNA (cfDNA) significantly predicted pathologic complete response status, far better than plasma ctDNA was able to. A random forest model incorporating these urine cfDNA-derived factors with leave-one-out cross-validation was 87% sensitive for predicting residual disease in reference to gold-standard surgical pathology. Both progression-free survival (HR = 3.00, p = 0.01) and overall survival (HR = 4.81, p = 0.009) were dramatically worse by Kaplan-Meier analysis for patients predicted by the model to have MRD, which was corroborated by Cox regression analysis. Additional survival analyses performed on muscle-invasive, neoadjuvant chemotherapy, and held-out validation subgroups corroborated these findings. In summary, we profiled urine samples from 74 patients with localized bladder cancer and used urine cfDNA multi-omics to detect MRD sensitively and predict survival accurately.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA