Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Eur J Appl Physiol ; 122(8): 1885-1895, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35551453

RESUMEN

PURPOSE: Leg cycling exercise acutely augments radial artery low-flow mediated constriction (L-FMC). Herein, we sought to determine whether this is associated with exercise-induced changes in arterial shear rate (SR). METHODS: Ten healthy and recreationally active young men (23 ± 2 years) participated in 30 min of incremental leg cycling exercise (50, 100, 150 Watts). Trials were repeated with (Exercise + WC) and without (Exercise) the use of a wrist cuff (75 mmHg) placed distal to the radial artery to increase local retrograde SR while reducing mean and anterograde SR. Radial artery characteristics were measured throughout the trial, and L-FMC and flow mediated dilatation (FMD) were assessed before and acutely (~ 10 min) after leg cycling. RESULTS: Exercise increased radial artery mean and anterograde SR, along with radial artery diameter, velocity, blood flow and conductance (P < 0.05). Exercise + WC attenuated the exercise-induced increase in mean and anterograde SR (P > 0.05) but also increased retrograde SR (P < 0.05). In addition, increases in radial artery blood flow and diameter were reduced during Exercise + WC (Exercise + WC vs. Exercise, P < 0.05). After Exercise, L-FMC was augmented (- 4.4 ± 1.4 vs. - 13.1 ± 1.6%, P < 0.05), compared to no change in L-FMC after Exercise + WC (- 5.2 ± 2.0 vs. - 3.0 ± 1.6%, P > 0.05). In contrast, no change in FMD was observed in either Exercise or Exercise + WC trials (P > 0.05). CONCLUSIONS: These findings indicate that increases in L-FMC following exercise are abolished by the prevention of increases radial artery diameter, mean and anterograde SR, and by elevation of retrograde SR, during exercise in young men.


Asunto(s)
Ejercicio Físico , Arteria Radial , Velocidad del Flujo Sanguíneo/fisiología , Arteria Braquial/fisiología , Constricción , Endotelio Vascular/fisiología , Ejercicio Físico/fisiología , Humanos , Masculino , Arteria Radial/fisiología , Flujo Sanguíneo Regional/fisiología , Extremidad Superior , Vasodilatación/fisiología
2.
J Appl Physiol (1985) ; 129(6): 1373-1382, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33031019

RESUMEN

We sought to determine how whole body heating acutely influences radial artery function, characterized using flow-mediated dilation (FMD) and low-flow-mediated constriction (L-FMC), and the mechanistic role of shear rate modification on radial artery functional characteristics during heating. Eleven young healthy men underwent whole body heating (water-perfused suit) sufficient to raise the core temperature by +1°C. Trials were repeated with (heat + WC) and without (heat) the application of a wrist cuff located distal to the radial artery examined, known to prevent increases in mean and anterograde shear rates but increase retrograde shear rate. Radial artery characteristics were assessed throughout each trial, with FMD and L-FMC assessed before and upon reaching the target core temperature. Heat markedly increased radial artery mean and anterograde shear rates, along with radial artery diameter and blood flow (P < 0.05). Heat + WC abolished the heat-induced increase in mean and anterograde shear rates (P > 0.05) but markedly increased retrograde shear rate (P < 0.05). Concomitantly, increases in radial artery diameter and blood flow were decreased (heat + WC vs. heat, P < 0.05). Heat attenuated FMD (8.6 ± 1.2% vs. 2.2 ± 1.4%, P < 0.05), whereas no change in FMD was observed in heat + WC (7.8 ± 1.2% vs. 10.8 ± 1.2%, P > 0.05). In contrast, L-FMC was not different in either trial (P > 0.05). In summary, acute whole body heating markedly elevates radial artery shear rate, diameter, and blood flow and diminishes FMD. However, marked radial artery vasodilation and diminished FMD are absent when these shear rate changes are prevented. Shear rate modifications underpin the radial artery response to acute whole body heat stress, but further endothelium-dependent vasodilation (FMD) is attenuated likely as the vasodilatory range limit is approached.NEW & NOTEWORTHY We observed that acute whole body heating elevates radial artery shear rate, diameter, and blood flow. This results in a diminished flow-meditated dilatation (FMD) but does not change low-flow-mediated constriction (L-FMC). Preventing shear rate changes during whole body heating reduces radial artery vasodilation and reverses FMD reductions but has no effect on L-FMC. These findings indicate that shear rate changes underpin conduit artery responses to acute whole body heat stress, but further endothelium-dependent flow-mediated vasodilation is attenuated as the vasodilatory range limit is approached.


Asunto(s)
Arteria Radial , Vasodilatación , Velocidad del Flujo Sanguíneo , Arteria Braquial , Endotelio Vascular , Respuesta al Choque Térmico , Humanos , Masculino , Flujo Sanguíneo Regional , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA