Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Redox Biol ; 69: 102980, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38064763

RESUMEN

The early life environment significantly affects the development of age-related skeletal muscle disorders. However, the long-term effects of lactational protein restriction on skeletal muscle are still poorly defined. Our study revealed that male mice nursed by dams fed a low-protein diet during lactation exhibited skeletal muscle growth restriction. This was associated with a dysregulation in the expression levels of genes related to the ribosome, mitochondria and skeletal muscle development. We reported that lifelong protein restriction accelerated loss of type-IIa muscle fibres and reduced muscle fibre size by impairing mitochondrial homeostasis and proteostasis at 18 months of age. However, feeding a normal-protein diet following lactational protein restriction prevented accelerated fibre loss and fibre size reduction in later life. These findings provide novel insight into the mechanisms by which lactational protein restriction hinders skeletal muscle growth and includes evidence that lifelong dietary protein restriction accelerated skeletal muscle loss in later life.


Asunto(s)
Dieta con Restricción de Proteínas , Proteostasis , Femenino , Masculino , Animales , Ratones , Dieta con Restricción de Proteínas/efectos adversos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteínas/metabolismo , Mitocondrias/metabolismo
2.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35955948

RESUMEN

Sarcopenia is characterised by an age-related decrease in the number of muscle fibres and additional weakening of the remaining fibres, resulting in a reduction in muscle mass and function. Many studies associate poor maternal nutrition during gestation and/or lactation with altered skeletal muscle homeostasis in the offspring and the development of sarcopenia. The aim of this study was to determine whether the musculoskeletal physiology in offspring born to mouse dams fed a low-protein diet during pregnancy was altered and whether any physiological changes could be modulated by the nutritional protein content in early postnatal stages. Thy1-YFP female mice were fed ad libitum on either a normal (20%) or a low-protein (5%) diet. Newborn pups were cross-fostered to different lactating dams (maintained on a 20% or 5% diet) to generate three groups analysed at weaning (21 days): Normal-to-Normal (NN), Normal-to-Low (NL) and Low-to-Normal (LN). Further offspring were maintained ad libitum on the same diet as during lactation until 12 weeks of age, creating another three groups (NNN, NLL, LNN). Mice on a low protein diet postnatally (NL, NLL) exhibited a significant reduction in body and muscle weight persisting up to 12 weeks, unlike mice on a low protein diet only prenatally (LN, LNN). Muscle fibre size was reduced in mice from the NL but not LN group, showing recovery at 12 weeks of age. Muscle force was reduced in NLL mice, concomitant with changes in the NMJ site and changes in atrophy-related and myosin genes. In addition, µCT scans of mouse tibiae at 12 weeks of age revealed changes in bone mass and morphology, resulting in a higher bone mass in the NLL group than the control NNN group. Finally, changes in the expression of miR-133 in the muscle of NLL mice suggest a regulatory role for this microRNA in muscle development in response to postnatal diet changes. Overall, this data shows that a low maternal protein diet and early postnatal life low-protein intake in mice can impact skeletal muscle physiology and function in early life while postnatal low protein diet favours bone integrity in adulthood.


Asunto(s)
Lactancia , Sarcopenia , Animales , Dieta con Restricción de Proteínas , Femenino , Humanos , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Ratones , Músculo Esquelético/metabolismo , Proyectos Piloto , Embarazo , Sarcopenia/etiología , Sarcopenia/metabolismo
3.
Cells ; 10(5)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064819

RESUMEN

Maternal diet during gestation and lactation affects the development of skeletal muscles in offspring and determines muscle health in later life. In this paper, we describe the association between maternal low protein diet-induced changes in offspring skeletal muscle and the differential expression (DE) of small non-coding RNAs (sncRNAs). We used a mouse model of maternal protein restriction, where dams were fed either a normal (N, 20%) or a low protein (L, 8%) diet during gestation and newborns were cross-fostered to N or L lactating dams, resulting in the generation of NN, NL and LN offspring groups. Total body and tibialis anterior (TA) weights were decreased in weanling NL male offspring but were not different in the LN group, as compared to NN. However, histological evaluation of TA muscle revealed reduced muscle fibre size in both groups at weaning. Small RNA-sequencing demonstrated DE of multiple miRs, snoRNAs and snRNAs. Bioinformatic analyses of miRs-15a, -34a, -122 and -199a, in combination with known myomiRs, confirmed their implication in key muscle-specific biological processes. This is the first comprehensive report for the DE of sncRNAs in nutrition-associated programming of skeletal muscle development, highlighting the need for further research to unravel the detailed molecular mechanisms.


Asunto(s)
Dieta con Restricción de Proteínas , Lactancia/metabolismo , Músculo Esquelético/metabolismo , ARN Nucleolar Pequeño/metabolismo , ARN Pequeño no Traducido , Animales , Proteínas Bacterianas/metabolismo , Biología Computacional , Femenino , Proteínas Luminiscentes/metabolismo , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Ratones , MicroARNs/genética , Desarrollo de Músculos , Análisis de Secuencia de ADN , Destete
4.
FASEB J ; 34(9): 11844-11859, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32652768

RESUMEN

Lactation-induced bone loss occurs due to high calcium requirements for fetal growth but skeletal recovery is normally achieved promptly postweaning. Dietary protein is vital for fetus and mother but the effects of protein undernutrition on the maternal skeleton and skeletal muscles are largely unknown. We used mouse dams fed with normal (N, 20%) or low (L, 8%) protein diet during gestation and lactation and maintained on the same diets (NN, LL) or switched from low to normal (LN) during a 28 d skeletal restoration period post lactation. Skeletal muscle morphology and neuromuscular junction integrity was not different between any of the groups. However, dams fed the low protein diet showed extensive bone loss by the end of lactation, followed by full skeletal recovery in NN dams, partial recovery in LN and poor bone recovery in LL dams. Primary osteoblasts from low protein diet fed mice showed decreased in vitro bone formation and decreased osteogenic marker gene expression; promoter methylation analysis by pyrosequencing showed no differences in Bmpr1a, Ptch1, Sirt1, Osx, and Igf1r osteoregulators, while miR-26a, -34a, and -125b expression was found altered in low protein fed mice. Therefore, normal protein diet is indispensable for maternal musculoskeletal health during the reproductive period.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales/fisiología , Enfermedades Óseas Metabólicas/fisiopatología , Dieta con Restricción de Proteínas , Lactancia/fisiología , Músculo Esquelético/fisiología , Reproducción/fisiología , Animales , Animales Recién Nacidos , Peso Corporal , Enfermedades Óseas Metabólicas/genética , Enfermedades Óseas Metabólicas/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Ratones Transgénicos , MicroARNs/genética , Músculo Esquelético/metabolismo , Osteoblastos/metabolismo , Osteogénesis/genética , Destete
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA