Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Int J Nanomedicine ; 19: 609-631, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38264736

RESUMEN

Introduction: The emergence of Neisseria gonorrhoeae-resistant strains represents one of the most urgent global threats. In this regard, C7-3 peptide is one of the anti-virulence therapies that has demonstrated promising anti-gonococcal activity. Accordingly, this research aimed to formulate C7-3 peptide and its derivatives in chitosan nanoparticles. Methods: The peptide loaded chitosan nanoparticles were prepared using ion gelation method, and their physicochemical characteristics were investigated. The anti-gonococcal and antibiofilm activity of prepared NPs was assessed, and their cytotoxicity in human ovarian cells was evaluated. Results: All prepared NPs were optimized for the smallest particle size of 136.9 to 168.3 nm. The EE% of C7-3, C7-3m1, and C7-3m2 CNPs reached 90.2, 92.5, and 91.8%, respectively. An in vitro release study demonstrated a continuous sustained-release pattern of C7-3 peptide from NPs. The SDS-PAGE assay confirmed the integrity of C7-3 peptide after the fabrication process. When comparing each peptide alone, the generated NPs demonstrated higher anti-gonococcal and anti-biofilm effectiveness against standard and resistant bacterial strains under anaerobic conditions. The cytotoxicity experiments revealed the cytocompatibility of NPs in HeLa cell lines. Given the advantages of enhanced anti-gonococcal activity of the C7-3 peptide and its derivatives when loaded with CNPs, as well as the antimicrobial properties of chitosan NPs, the reported NPs have great potential in the treatment of gonococcal infection.


Asunto(s)
Quitosano , Nanopartículas , Humanos , Neisseria gonorrhoeae , Células HeLa , Biopelículas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA