Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Clin Interv Aging ; 18: 1067-1091, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456063

RESUMEN

This scoping review investigates the volume of evidence for home-based exercise and nutrition programs and their effect on muscle quality among senior adults to inform implementation and future research. It aims to answer the research question: What are the evidence, challenges, and needs for research regarding a home-based exercise and nutrition intervention program to improve muscle outcomes in senior adults? This scoping review was conducted following the PRISMA extension for Scoping Review. The following databases were searched: PubMed, Scopus, MEDLINE, CINAHL, EMBASE, and the Cochrane Library. Applied filters were used to help condense the research articles. A total of 13 studies met the inclusion criteria for this scoping review. Most exercise interventions were either resistance or multi-component exercise programs. The nature of the nutrition intervention varied between different supplements, foods, education, or counseling. Muscle outcomes included muscle mass in nine studies, muscle function in all the studies, muscle strength in ten studies, and biochemical analyses in two studies. Two studies found improvements in muscle mass; two studies revealed improvements in all their muscle function tests; and three studies revealed improvements in muscle strength. Muscle biopsy in a study revealed enhanced muscle fibers, but both studies did not reveal any biomarker improvements. The scoping review findings revealed mixed results on the effectiveness of a home-based exercise and nutrition program. However, the current evidence does have many gaps to address before recommending this form of intervention for senior adults as an effective way to prevent and manage sarcopenia. Since this review identified multiple knowledge gaps, strengths, and limitations in this growing field, it can be a starting point to help build future study designs and interventions in this population.


Asunto(s)
Ejercicio Físico , Fuerza Muscular , Humanos , Fuerza Muscular/fisiología , Músculos
2.
Sports Med ; 53(8): 1507-1526, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37213050

RESUMEN

Resting metabolic rate (RMR) is a significant contributor to an individual's total energy expenditure. As such, RMR plays an important role in body weight regulation across populations ranging from inactive individuals to athletes. In addition, RMR may also be used to screen for low energy availability and energy deficiency in athletes, and thus may be useful in identifying individuals at risk for the deleterious consequences of chronic energy deficiency. Given its importance in both clinical and research settings within the fields of exercise physiology, dietetics, and sports medicine, the valid assessment of RMR is critical. However, factors including varying states of energy balance (both short- and long-term energy deficit or surplus), energy availability, and prior food intake or exercise may influence resulting RMR measures, potentially introducing error into observed values. The purpose of this review is to summarize the relationships between short- and long-term changes in energetic status and resulting RMR measures, consider these findings in the context of relevant recommendations for RMR assessment, and provide suggestions for future research.


Asunto(s)
Metabolismo Basal , Metabolismo Energético , Humanos , Metabolismo Basal/fisiología , Metabolismo Energético/fisiología , Peso Corporal , Ejercicio Físico/fisiología , Atletas , Ingestión de Energía , Composición Corporal
3.
J Nutr Biochem ; 115: 109242, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36442715

RESUMEN

Obesity is associated with an imbalance of micro-and macro-nutrients, gut dysbiosis, and a "leaky" gut phenomenon. Polyphenols, such as curcumin, resveratrol, and anthocyanins may alleviate the systemic effects of obesity, potentially by improving gut microbiota, intestinal barrier integrity (IBI), and zinc homeostasis. The essential micronutrient zinc plays a crucial role in the regulation of enzymatic processes, including inflammation, maintenance of the microbial ecology, and intestinal barrier integrity. In this review, we focus on IBI- which prevents intestinal lipopolysaccharide (LPS) leakage - as a critical player in polyphenol-mediated protective effects against obesity-associated white adipose tissue (WAT) inflammation. This occurs through mechanisms that block the movement of the bacterial endotoxin LPS across the gut barrier. Available research suggests that polyphenols reduce WAT and systemic inflammation via crosstalk with inflammatory NF-κB, the mammalian target of rapamycin (mTOR) signaling and zinc homeostasis.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Polifenoles/farmacología , Lipopolisacáridos/farmacología , Antocianinas/farmacología , Obesidad/microbiología , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Homeostasis , Zinc/farmacología , Disbiosis/microbiología
4.
Nutr Rev ; 80(3): 439-452, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35142356

RESUMEN

Intermittent fasting (IF) is a dietary strategy that involves alternating periods of abstention from calorie consumption with periods of ad libitum food intake. There is significant interest in the body of literature describing longitudinal adaptations to IF. Less attention has been given to the acute physiological responses that occur during the fasting durations that are commonly employed by IF practitioners. Thus, the purpose of this review was to examine the physiological responses - including alterations in substrate metabolism, systemic hormones, and autophagy - that occur throughout an acute fast. Literature searches were performed to locate relevant research describing physiological responses to acute fasting and short-term starvation. A single fast demonstrated the ability to alter glucose and lipid metabolism within the initial 24 hours, but variations in protein metabolism appeared to be minimal within this time frame. The ability of an acute fast to elicit significant increases in autophagy is still unknown. The information summarized in this review can be used to help contextualize existing research and better inform development of future IF interventions.


Asunto(s)
Ingestión de Energía , Ayuno , Glucemia , Dieta , Ayuno/fisiología , Glucosa , Humanos , Metabolismo de los Lípidos
5.
Biomedicines ; 9(11)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34829779

RESUMEN

Visceral obesity may be a driving factor in nonalcoholic fatty liver disease (NAFLD) development. Previous studies have shown that the omega-3 polyunsaturated fatty acid, eicosapentaenoic acid (EPA), ameliorates obesity in high-fat (HF) fed male, C57Bl/6 mice at thermoneutral conditions, independent of uncoupling protein 1 (UCP1). Our goals herein were to investigate sex-dependent mechanisms of EPA in the livers of wild type (WT) and UCP1 knockout (KO) male and female mice fed a HF diet (45% kcal fat; WT-HF, KO-HF) with or without supplementation of 36 g/kg EPA (WT-EPA, KO-EPA). KO significantly increased body weight in males, with no significant reductions with EPA in the WT or KO groups. In females, there were no significant differences in body weight among KO groups and no effects of EPA. In males, liver TGs were significantly higher in the KO-HF group and reduced with EPA, which was not observed in females. Accordingly, gene and protein markers of mitochondrial oxidation, peroxisomal biogenesis and oxidation, as well as metabolic futile cycles were sex-dependently impacted by KO and EPA supplementation. These findings suggest a genotypic difference in response to dietary EPA supplementation on the livers of male and female mice with diet-induced obesity and housed at thermoneutrality.

6.
Mol Nutr Food Res ; 65(22): e2100274, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34510720

RESUMEN

SCOPE: Obesity prevalence continues to increase and contribute to metabolic diseases, potentially by driving systemic inflammation. Curcumin is an anti-inflammatory spice with claimed health benefits. However, mechanisms by which curcumin may reduce obesity-associated inflammation are poorly understood; thus, it is hypothesized that benefits of curcumin consumption may occur through reduced white adipose tissue (WAT) inflammation and/or beneficial changes in gut bacteria. METHODS AND RESULTS: Male B6 mice are fed high-fat diets (HFD, 45% kcal fat) or HFD supplemented with 0.4% (w/w) curcumin (HFC) for 14 weeks. Curcumin supplementation significantly reduces adiposity and total macrophage infiltration in WAT, compared to HFD group, consistent with reduced mRNA levels of M1 (Cd80, Cd38, Cd11c) and M2 (Arginase-1) macrophage markers. Moreover, curcumin supplementation reduces expression of other key pro-inflammatory genes, such as NF-κB p65 subunit (p65), Stat1, Tlr4, and Il6, in WAT (p < 0.05). Using microbial 16S RNA sequencing, it is demonstrated that the relative abundance of the Lactococcus, Parasutterella, and Turicibacter genera are increased in the HFC group versus HFD. CONCLUSIONS: Curcumin exerts protective metabolic effects in dietary obesity, in part through downregulation of adipose tissue inflammation, which may be mediated by alterations in composition of gut microbiota, and metabolism of curcumin into curcumin-O-glucuronide.


Asunto(s)
Curcumina , Microbioma Gastrointestinal , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Curcumina/metabolismo , Curcumina/farmacología , Dieta Alta en Grasa/efectos adversos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/inducido químicamente , Obesidad/etiología
7.
Adv Nutr ; 12(1): 102-114, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32761179

RESUMEN

The influence of diet on the gut microbiota is an emerging research area with significant impact on human health and disease. However, the effects of beef, the most consumed red meat in the United States, on gut microbial profile are not well studied. Following Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols, the objective of this systematic review was to conduct a rigorous and thorough review of the current scientific literature regarding the effects of beef protein and the resulting bioactivity of beef protein and amino acids on the gut microbiota, with the goal of identifying gaps in the literature and guiding future research priorities. Utilizing MEDLINE Complete, PubMed, ScienceDirect, Scopus, and Google Scholar databases, we conducted searches including terms and combinations of the following: animal protein, amino acid, beef, bioactive compounds, diet, health, microbiome, peptide, processed beef, and protein. We identified 131 articles, from which 15 were included in our review. The effects of beef on mouse and rat models were mostly consistent for the bacterial phylum level. Short-term (1-4-wk) beef intakes had little to no effect on microbial profiles in humans. Most studies utilized high beef feeding (240-380 g/d), and no study examined recommended amounts of protein [∼3.71 oz/d (105 g/d) meats, poultry, and eggs, or ∼26 oz/week (737 g/wk) from these food sources] according to US dietary guidelines. Additionally, the majority of animal and human studies with adverse findings examined the impact of beef in the context of a diet high in fat or sugar. In conclusion, an extensive gap exists in the literature regarding beef and the microbiota. More studies are necessary to elucidate the role of the microbiota following the consumption of beef, especially in interaction with other dietary compounds, and how beef preparation, processing, and cooking methods differentially influence the biological effects of beef on human health.


Asunto(s)
Microbioma Gastrointestinal , Animales , Bovinos , Dieta , Huevos , Humanos , Carne , Ratones , Prevotella , Ratas
8.
Diabetes Metab Syndr Obes ; 12: 863-872, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31354322

RESUMEN

Purpose: Nonalcoholic fatty liver disease (NAFLD) is often referred to as the hepatic manifestation of the metabolic syndrome. The relationship between body weight, NAFLD, and insulin resistance is not well characterized in humans. Additionally, it is unclear why South Asians develop these complications at lower levels of obesity compared to their Western counterparts. Patients and methods: To address this question, we performed a cross-sectional study using a convenience sample of Sri Lankan adult females (n=34) and collected anthropometric data, adipose tissue specimens (for histology), and fasted serum samples (for metabolic and inflammatory markers). Hepatic steatosis was assessed by ultrasound scanning and used to classify participants as NAFL 0, NAFL 1, and NAFL 2. Results: Waist circumference significantly increased with increasing NAFL grade. Participants with NAFL had significantly higher body mass index, hip circumference, and fasting plasma glucose, as well as a higher mean adipocyte area in both abdominal subcutaneous and visceral areas, indicating a higher degree of adipocyte hypertrophy associated with fatty liver. There were, however, no differences in measures of dyslipidemia. Of the multiple adipokines measured, resistin was the only proinflammatory adipokine significantly elevated in NAFL 2. Conclusion: These findings indicate that measures of adiposity, fasting serum glucose, and resistin may be important indicators of NAFLD in South Asian women.

9.
Nutrients ; 11(3)2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-30871035

RESUMEN

The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing worldwide, concurrent with increased obesity. Thus, there is urgent need for research that can lead to effective NAFLD prevention/treatment strategies. Omega-3 polyunsaturated fatty acids (n-3 PUFAs), including eicosapentaenoic acid (EPA), improve inflammation- and dyslipidemia-related metabolic disorders; however, mechanisms mediating the benefits of n-3 PUFAs in NAFLD treatment are less understood. We previously reported that EPA reversed obesity-induced hepatic steatosis in high-fat (HF)-fed B6 mice. Utilizing a combination of biochemical analyses of liver tissues from HF and HF-EPA-fed mice and a series of in vitro studies in tumor necrosis factor-alpha (TNF-α)-stimulated HepG2 cells, we dissect the mechanistic effects of EPA in reducing hepatic steatosis, including the role of EPA-targeted microRNAs (miRNA). With EPA, hepatic lipid metabolism was improved in HF-EPA mice, as indicated by decreased protein and messenger RNA (mRNA) levels of fatty acid synthase (FASN) and acetyl-CoA carboxylase (Acaca) gene, and increased mRNA levels for the peroxisome proliferator activated receptor-α (Pparα), and carnitine palmitoyltransferase (Cpt) 1a and 2 genes in the HF-EPA mice. Additionally, inflammation was reduced, as shown by decreased tumor necrosis factor-alpha (Tnfα) gene expression. Accordingly, EPA also significantly reduced FASN and ACACA mRNAs in human HepG2 cells. Glycolysis, estimated by extracellular acidification rate, was significantly reduced in HepG2 cells treated with EPA vs. vehicle. Furthermore, we identified several miRNAs that are regulated by EPA in mouse liver, including miR-19b-3p, miR-21a-5p, and others, which target lipid metabolism and inflammatory pathways. In conclusion, our findings provide novel mechanistic evidence for beneficial effects of EPA in NAFLD, through the identification of specific genes and miRNAs, which may be further exploited as future NAFLD therapies.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Ácido Eicosapentaenoico/farmacología , Obesidad/inducido químicamente , Animales , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo
10.
Nutr Diabetes ; 9(1): 5, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30778042

RESUMEN

BACKGROUND/OBJECTIVES: Mechanisms of obesity-associated insulin resistance and dysglycemia in South Asians remain relatively unknown. The objective of this study was to detect subcutaneous (SAT) vs. visceral (VAT) adipose tissue characteristics and adipocytokines associated with obesity, insulin resistance, and dysglycemia in South Asian women. SUBJECTS/METHODS: This was a hospital-based cross-sectional study conducted in Sri Lanka. Subjects comprised of 58 adult women who underwent routine abdominal surgeries. SAT and VAT were obtained from anterior abdominal wall and omentum, respectively. Measures of adiposity, serum insulin and glucose, SAT and VAT crown-like structures (CLS), macrophages, resistin by immunohistochemistry, mean adipocyte area (MAA), and serum adipocytokines were examined. RESULTS: The homeostatic model assessment for insulin resistance (HOMA-IR) score significantly correlated with age and waist circumference (WC), but not with body mass index (BMI). Although the number of CLS positively correlated with BMI, there were no significant differences between the number of CLS in women with normal fasting glucose (NFG) vs. those with impaired fasting glucose (IFG), indicating that adipose tissue macrophage infiltration is unlikely to be related to dysglycemia. In contrast, serum resistin level was on average 60% higher in women with IFG compared to ones with NFG (p < 0.05). Serum resistin levels correlated with age (r = 0.36, p < 0.05) and WC (r = 0.27, p < 0.05). There were no associations in serum levels of other adipocytokines with IFG. Adipose immunohistochemistry showed that women with IFG had a higher percentage of resistin positive adipocytes in SAT compared to ones with NFG. MAA of VAT, but not SAT, correlated with both BMI and WC. CONCLUSIONS: Resistin may be an important adipokine linking central adiposity and insulin resistance in South Asian women. Both systemic and adipose tissue resistin are linked to dysglycemia in these individuals and may be a potential biomarker for diabetes in this population.


Asunto(s)
Tejido Adiposo/metabolismo , Adiposidad/fisiología , Hiperglucemia/metabolismo , Resistencia a la Insulina/fisiología , Sobrepeso/metabolismo , Resistina/metabolismo , Adolescente , Adulto , Anciano , Glucemia/metabolismo , Índice de Masa Corporal , Estudios Transversales , Femenino , Prueba de Tolerancia a la Glucosa , Humanos , Hiperglucemia/sangre , Persona de Mediana Edad , Sobrepeso/sangre , Resistina/sangre , Sri Lanka , Circunferencia de la Cintura , Adulto Joven
11.
BMC Complement Altern Med ; 18(1): 280, 2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30333014

RESUMEN

BACKGROUND: Rest or acute exercise can decrease state anxiety, with some evidence showing exercise to prevent laboratory-induced elevations in anxiety. No study has examined whether yoga provides short-term protection against laboratory-induced anxiety. The aim of this study was to examine the effectiveness of an acute YogaFit session on state anxiety and measures of heart rate variability (HRV) to determine whether yoga provides short-term protection against emotional picture stimuli. METHODS: A randomized repeated-measures crossover clinical trial was performed. Forty healthy, female college students completed a 30 min session of YogaFit and a time-matched seated rest condition on separate days. After each condition, participants viewed 30 min of emotional picture stimuli. State anxiety, heart rate and time-domain and frequency-domain measures of HRV were assessed baseline, post- condition, and post-exposure to emotional stimuli. Data were analysed using a condition x time (2 × 3) repeated-measures ANOVA. RESULTS: Post-hoc comparisons indicate the following: (1) state anxiety significantly decreased from baseline to post-condition for both yoga and rest (p = 0.001) but returned to baseline values following exposure to emotional stimuli (p < 0.001) for both conditions; (2) heart rate decreased post-condition to post-exposure (p = 0.020) and baseline to post-exposure (p = 0.033) for both conditions; (3) time-domain measure of HRV showed a significant increase in HRV between baseline and post-condition (p = 0 .019), post-condition and post-exposure (p = 0 .007), and between baseline and post-exposure (p < 0.001). CONCLUSIONS: Both YogaFit and seated rest were effective at acutely reducing state anxiety post-condition, but not at preventing an induced anxiety response post-exposure. Following exposure to the emotionally stimulating pictures, there was a shift from the high frequency-domain to the low frequency-domain and an increase in the time-domain measure of HRV for both the YogaFit and the quiet rest condition. TRIAL REGISTRATION: Retrospectively registered 2/16/2018, clinicaltrials.gov, Identifier: NCT03458702 .


Asunto(s)
Ansiedad/terapia , Frecuencia Cardíaca/fisiología , Descanso , Yoga , Adulto , Ansiedad/fisiopatología , Ansiedad/psicología , Emociones/fisiología , Femenino , Humanos , Descanso/fisiología , Descanso/psicología , Estudios Retrospectivos , Adulto Joven
12.
J Nutr Biochem ; 58: 1-16, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29621669

RESUMEN

Strategies to reduce obesity have become public health priorities as the prevalence of obesity has risen in the United States and around the world. While the anti-inflammatory and hypotriglyceridemic properties of long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs) are well known, their antiobesity effects and efficacy against metabolic syndrome, especially in humans, are still under debate. In animal models, evidence consistently suggests a role for n-3 PUFAs in reducing fat mass, particularly in the retroperitoneal and epididymal regions. In humans, however, published research suggests that though n-3 PUFAs may not aid weight loss, they may attenuate further weight gain and could be useful in the diet or as a supplement to help maintain weight loss. Proposed mechanisms by which n-3 PUFAs may work to improve body composition and counteract obesity-related metabolic changes include modulating lipid metabolism; regulating adipokines, such as adiponectin and leptin; alleviating adipose tissue inflammation; promoting adipogenesis and altering epigenetic mechanisms.


Asunto(s)
Ácidos Grasos Omega-3/farmacología , Síndrome Metabólico/dietoterapia , Obesidad/dietoterapia , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Fármacos Antiobesidad/farmacología , Composición Corporal/efectos de los fármacos , Ejercicio Físico , Humanos , Resistencia a la Insulina , Síndrome Metabólico/prevención & control , Obesidad/prevención & control , Paniculitis/dietoterapia , Paniculitis/metabolismo , Paniculitis/prevención & control , Verduras/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA