Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mar Drugs ; 19(11)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34822511

RESUMEN

The marine environment is potentially a prolific source of small molecules with significant biological activities. In recent years, the development of new chromatographic phases and the progress in cell and molecular techniques have facilitated the search for marine natural products (MNPs) as novel pharmacophores and enhanced the success rate in the selection of new potential drug candidates. However, most of this exploration has so far been driven by anticancer research and has been limited to a reduced number of taxonomic groups. In this article, we report a test study on the screening potential of an in-house library of natural small molecules composed of 285 samples derived from 57 marine organisms that were chosen from among the major eukaryotic phyla so far represented in studies on bioactive MNPs. Both the extracts and SPE fractions of these organisms were simultaneously submitted to three different bioassays-two phenotypic and one enzymatic-for cytotoxic, antidiabetic, and antibacterial activity. On the whole, the screening of the MNP library selected 11 potential hits, but the distribution of the biological results showed that SPE fractionation increased the positive score regardless of the taxonomic group. In many cases, activity could be detected only in the enriched fractions after the elimination of the bulky effect due to salts. On a statistical basis, sponges and molluscs were confirmed to be the most significant source of cytotoxic and antimicrobial products, but other phyla were found to be effective with the other therapeutic targets.


Asunto(s)
Antineoplásicos/farmacología , Organismos Acuáticos , Animales , Antineoplásicos/química , Fraccionamiento Químico , Descubrimiento de Drogas , Moluscos , Poríferos
2.
Molecules ; 26(11)2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34070798

RESUMEN

A series of novel quinoline-based tetracyclic ring-systems were synthesized and evaluated in vitro for their antiplasmodial, antiproliferative and antimicrobial activities. The novel hydroiodide salts 10 and 21 showed the most promising antiplasmodial inhibition, with compound 10 displaying higher selectivity than the employed standards. The antiproliferative assay revealed novel pyridophenanthridine 4b to be significantly more active against human prostate cancer (IC50 = 24 nM) than Puromycin (IC50 = 270 nM) and Doxorubicin (IC50 = 830 nM), which are used for clinical treatment. Pyridocarbazoles 9 was also moderately effective against all the employed cancer cell lines and moreover showed excellent biofilm inhibition (9a: MBIC = 100 µM; 9b: MBIC = 100 µM).


Asunto(s)
Alcaloides Indólicos/farmacología , Quinolinas/síntesis química , Quinolinas/farmacología , Antiinfecciosos/farmacología , Antimaláricos/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Alcaloides Indólicos/metabolismo , Plasmodium falciparum/efectos de los fármacos , Quinolinas/metabolismo , Relación Estructura-Actividad
3.
J Med Chem ; 64(3): 1423-1434, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33502198

RESUMEN

Despite the recent advances in cancer therapeutics, highly aggressive cancer forms, such as glioblastoma (GBM), still have very low survival rates. The intracellular scaffold protein syntenin, comprising two postsynaptic density protein-95/discs-large/zona occludens-1 (PDZ) domains, has emerged as a novel therapeutic target in highly malignant phenotypes including GBM. Here, we report the development of a novel, highly potent, and metabolically stable peptide inhibitor of syntenin, KSL-128114, which binds the PDZ1 domain of syntenin with nanomolar affinity. KSL-128114 is resistant toward degradation in human plasma and mouse hepatic microsomes and displays a global PDZ domain selectivity for syntenin. An X-ray crystal structure reveals that KSL-128114 interacts with syntenin PDZ1 in an extended noncanonical binding mode. Treatment with KSL-128114 shows an inhibitory effect on primary GBM cell viability and significantly extends survival time in a patient-derived xenograft mouse model. Thus, KSL-128114 is a novel promising candidate with therapeutic potential for highly aggressive tumors, such as GBM.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Péptidos/química , Péptidos/farmacología , Sinteninas/efectos de los fármacos , Animales , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Humanos , Ligandos , Ratones , Microsomas/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Difracción de Rayos X , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Bioorg Chem ; 84: 106-114, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30500520

RESUMEN

The marine environment remains a rich source for the discovery and development of novel bioactive compounds. The present paper describes the design, synthesis and biological evaluation of a library of small molecule heterocyclic mimetics of the marine 2,5-diketopiperazine barettin which is a powerful natural antioxidant. By mainly focusing on the influence from the brominated indole and heterocyclic core of barettin, a library of 19 compounds was prepared. The compounds comprised a heterocyclic core, either a 2,5 diketopiperazine, an imidazolidinedione or a thioxothiazolidinone, which were mainly monosubstituted with ranging bulky substituents. The prepared compounds were screened for activity in a cellular lipid peroxidation assay using HepG2 cells. Several of the synthetic compounds showed antioxidant properties superior to the positive control barettin. Two of the prepared compounds displayed inhibitory activity similar to commercial antioxidants with significant inhibition at low µg/mL concentrations. The toxicity of the compounds was also investigated against MRC-5 lung fibroblasts and none of the included compounds displayed any toxicity at 50 µg/mL.


Asunto(s)
Antioxidantes/farmacología , Compuestos Heterocíclicos/farmacología , Peroxidación de Lípido/efectos de los fármacos , Péptidos Cíclicos/química , Bibliotecas de Moléculas Pequeñas/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Fibroblastos/efectos de los fármacos , Células Hep G2 , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/aislamiento & purificación , Humanos , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/aislamiento & purificación , Relación Estructura-Actividad
5.
Chem Biol Drug Des ; 90(1): 128-140, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28139899

RESUMEN

Drug discovery strategies include from broad random screening to focussed target-based approaches. Structure and substrate information greatly enables target-based design, but this is limited to relatively few targets; cell-based screening can identify new targets but often suffers from low hit rates and difficult hit optimization. Thus, newer approaches are needed that can improve the efficiency of screening and hit optimization. Here, we describe an efficient approach for hit generation, which may be called "biofocussed chemoprospecting." With bio-likeness and ease of synthesis as priority criteria, libraries may be constructed with good optimization potential, physicochemical diversity, drug likeness and low cost. Following this approach, two libraries based on linear and cyclic dipeptide scaffolds were designed, first as virtual libraries comprising of more than 30000 compounds, and after subsequent filtering, as a small library of a total of 51 compounds. These provided good diversity at low cost, and were tested for bioactivities. The discovery of six active compounds demonstrates a hit rate greater than 10%. This is comparable to target-based approaches, but the "chemoprospecting" method described here has the additional potential to identify new targets and mechanisms.


Asunto(s)
Dipéptidos/química , Descubrimiento de Drogas , Bibliotecas de Moléculas Pequeñas/química , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dicetopiperazinas/síntesis química , Dicetopiperazinas/química , Dicetopiperazinas/farmacología , Dipéptidos/síntesis química , Dipéptidos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Células Hep G2 , Humanos , Biblioteca de Péptidos , Bibliotecas de Moléculas Pequeñas/farmacología , Staphylococcus epidermidis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA