Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1863(11): 2727-2745, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28720486

RESUMEN

Affective and cognitive processing of nociception contributes to the development of chronic pain and vice versa, pain may precipitate psychopathologic symptoms. We hypothesized a higher risk for the latter with immanent neurologic diseases and studied this potential interrelationship in progranulin-deficient mice, which are a model for frontotemporal dementia, a disease dominated by behavioral abnormalities in humans. Young naïve progranulin deficient mice behaved normal in tests of short-term memory, anxiety, depression and nociception, but after peripheral nerve injury, they showed attention-deficit and depression-like behavior, over-activity, loss of shelter-seeking, reduced impulse control and compulsive feeding behavior, which did not occur in equally injured controls. Hence, only the interaction of 'pain x progranulin deficiency' resulted in the complex phenotype at young age, but neither pain nor progranulin deficiency alone. A deep proteome analysis of the prefrontal cortex and olfactory bulb revealed progranulin-dependent alterations of proteins involved in synaptic transport, including neurotransmitter transporters of the solute carrier superfamily. In particular, progranulin deficiency was associated with a deficiency of nuclear and synaptic zinc transporters (ZnT9/Slc30a9; ZnT3/Slc30a3) with low plasma zinc. Dietary zinc supplementation partly normalized the attention deficit of progranulin-deficient mice, which was in part reminiscent of autism-like and compulsive behavior of synaptic zinc transporter Znt3-knockout mice. Hence, the molecular studies point to defective zinc transport possibly contributing to progranulin-deficiency-associated psychopathology. Translated to humans, our data suggest that neuropathic pain may precipitate cognitive and psychopathological symptoms of an inherent, still silent neurodegenerative disease.


Asunto(s)
Proteínas Portadoras , Dolor Crónico , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Neuralgia , Traumatismos de los Nervios Periféricos , Zinc/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Dolor Crónico/genética , Dolor Crónico/metabolismo , Dolor Crónico/fisiopatología , Dolor Crónico/psicología , Granulinas , Transporte Iónico , Ratones , Ratones Noqueados , Neuralgia/genética , Neuralgia/metabolismo , Neuralgia/fisiopatología , Neuralgia/psicología , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/fisiopatología , Traumatismos de los Nervios Periféricos/psicología , Progranulinas
2.
Neurobiol Dis ; 96: 294-311, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27629805

RESUMEN

Peripheral or central nerve injury is a frequent cause of chronic pain and the mechanisms are not fully understood. Using newly generated transgenic mice we show that progranulin overexpression in sensory neurons attenuates neuropathic pain after sciatic nerve injury and accelerates nerve healing. A yeast-2-hybrid screen revealed putative interactions of progranulin with autophagy-related proteins, ATG12 and ATG4b. This was supported by colocalization and proteomic studies showing regulations of ATG13 and ATG4b and other members of the autophagy network, lysosomal proteins and proteins involved in endocytosis. The association of progranulin with the autophagic pathway was functionally confirmed in primary sensory neurons. Autophagy and survival were impaired in progranulin-deficient neurons and improved in progranulin overexpressing neurons. Nerve injury in vivo caused an accumulation of LC3b-EGFP positive bodies in neurons of the dorsal root ganglia and nerves suggesting an impairment of autophagic flux. Overexpression of progranulin in these neurons was associated with a reduction of the stress marker ATF3, fewer protein aggregates in the injured nerve and enhanced stump healing. At the behavioral level, further inhibition of the autophagic flux by hydroxychloroquine intensified cold and heat nociception after sciatic nerve injury and offset the pain protection provided by progranulin. We infer that progranulin may assist in removal of protein waste and thereby helps to resolve neuropathic pain after nerve injury.


Asunto(s)
Autofagia/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neuralgia/patología , Células Receptoras Sensoriales/metabolismo , Factor de Transcripción Activador 3/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Antígeno CD11b/metabolismo , Proteínas de Unión al Calcio/metabolismo , Cisteína Endopeptidasas/metabolismo , Modelos Animales de Enfermedad , Ganglios Espinales/patología , Ontología de Genes , Granulinas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Dimensión del Dolor , Progranulinas
3.
Front Behav Neurosci ; 7: 174, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24319417

RESUMEN

Persistent neuropathic pain is a frequent consequence of peripheral nerve injuries, particularly in the elderly. Using the IntelliCage we studied if sciatic nerve injury obstructed learning and memory in young and aged mice, each in wild type and progranulin deficient mice, which develop premature signs of brain aging. Both young and aged mice developed long-term nerve injury-evoked hyperalgesia and allodynia. In both genotypes, aged mice with neuropathic pain showed high error rates in place avoidance acquisition tasks. However, once learnt, these aged mice with neuropathic pain showed a significantly stronger maintenance of the aversive memory. Nerve injury did not affect place preference behavior in neither genotype, neither in young nor aged mice. However, nerve injury in progranulin deficient mice impaired the learning of spatial sequences of awarded places, particularly in the aged mice. This task required a discrimination of clockwise and anti-clockwise sequences. The chaining failure occurred only in progranulin deficient mice after nerve injury, but not in sham operated or wildtype mice, suggesting that progranulin was particularly important for compensatory adaptations after nerve injury. In contrast, all aged mice with neuropathic pain, irrespective of the genotype, had a long maintenance of aversive memory suggesting a negative alliance and possibly mutual aggravation of chronic neuropathic pain and aversive memory at old age.

4.
J Proteomics ; 75(13): 3987-4004, 2012 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-22588120

RESUMEN

Nitric oxide is a pain signaling molecule and exerts its influence through two primary pathways: by stimulation of soluble guanylylcyclase and by direct S-nitrosylation (SNO) of target proteins. We assessed in the spinal cord the SNO-proteome with two methods, two-dimensional S-nitrosothiol difference gel electrophoresis (2D SNO-DIGE) and SNO-site identification (SNOSID) at baseline and 24h after sciatic nerve injury with/without pretreatment with the nitric oxide synthase inhibitor L-NG-nitroarginine methyl ester (L-NAME). After nerve injury, SNO-DIGE revealed 30 proteins with increased and 23 proteins with decreased S-nitrosylation. SNO-sites were identified for 17 proteins. After sham surgery only 3 proteins were up-nitrosylated. L-NAME pretreatment substantially reduced both constitutive and nerve injury evoked up-S-nitrosylation. For the top candidates S-nitrosylation was confirmed with the biotin switch technique and time course analyses at 1 and 7days showed that SNO modifications of protein disulfide isomerase, glutathione synthase and peroxiredoxin-6 had returned to baseline within 7days whereas S-nitrosylation of mitochondrial aconitase 2 was further increased. The identified SNO modified proteins are involved in mitochondrial function, protein folding and transport, synaptic signaling and redox control. The data show that nitric oxide mediated S-nitrosylation contributes to the nerve injury-evoked pathology in nociceptive signaling pathways.


Asunto(s)
S-Nitrosotioles/metabolismo , Nervio Ciático/lesiones , Médula Espinal/metabolismo , Aconitato Hidratasa/metabolismo , Animales , Glutatión Sintasa/metabolismo , Ratones , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Oxidación-Reducción , Peroxiredoxina VI/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Proteómica/métodos , Transducción de Señal/fisiología , Electroforesis Bidimensional Diferencial en Gel
5.
J Cell Mol Med ; 16(4): 708-21, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21645236

RESUMEN

Progranulin haploinsufficiency is associated with frontotemporal dementia in humans. Deficiency of progranulin led to exaggerated inflammation and premature aging in mice. The role of progranulin in adaptations to nerve injury and neuropathic pain are still unknown. Here we found that progranulin is up-regulated after injury of the sciatic nerve in the mouse ipsilateral dorsal root ganglia and spinal cord, most prominently in the microglia surrounding injured motor neurons. Progranulin knockdown by continuous intrathecal spinal delivery of small interfering RNA after sciatic nerve injury intensified neuropathic pain-like behaviour and delayed the recovery of motor functions. Compared to wild-type mice, progranulin-deficient mice developed more intense nociceptive hypersensitivity after nerve injury. The differences escalated with aging. Knockdown of progranulin reduced the survival of dissociated primary neurons and neurite outgrowth, whereas addition of recombinant progranulin rescued primary dorsal root ganglia neurons from cell death induced by nerve growth factor withdrawal. Thus, up-regulation of progranulin after neuronal injury may reduce neuropathic pain and help motor function recovery, at least in part, by promoting survival of injured neurons and supporting regrowth. A deficiency in this mechanism may increase the risk for injury-associated chronic pain.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/fisiología , Dolor/fisiopatología , Nervio Ciático/lesiones , Animales , Secuencia de Bases , Western Blotting , Técnica del Anticuerpo Fluorescente , Ganglios Espinales/metabolismo , Ganglios Espinales/fisiopatología , Granulinas , Hibridación in Situ , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Progranulinas , ARN Interferente Pequeño , Reacción en Cadena en Tiempo Real de la Polimerasa , Nervio Ciático/fisiopatología , Regulación hacia Arriba
6.
Mol Pain ; 6: 70, 2010 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-20977736

RESUMEN

BACKGROUND: Descending inhibitory pain control contributes to the endogenous defense against chronic pain and involves noradrenergic and serotonergic systems. The clinical efficacy of antidepressants suggests that serotonin may be particularly relevant for neuropathic pain conditions. Serotonergic signaling is regulated by synthesis, metabolisms, reuptake and receptors. RESULTS: To address the complexity, we used inbred mouse strains, C57BL/6J, 129 Sv, DBA/2J and Balb/c, which differ in brain serotonin levels. Serotonin analysis after nerve injury revealed inter-strain differences in the adaptation of descending serotonergic fibers. Upregulation of spinal cord and midbrain serotonin was apparent only in 129 Sv mice and was associated with attenuated nerve injury evoked hyperalgesia and allodynia in this strain. The increase of dorsal horn serotonin was blocked by hemisectioning of descending fibers but not by rhizotomy of primary afferents indicating a midbrain source. Para-chlorophenylalanine-mediated serotonin depletion in spinal cord and midbrain intensified pain hypersensitivity in the nerve injury model. In contrast, chronic inflammation of the hindpaw did not evoke equivalent changes in serotonin levels in the spinal cord and midbrain and nociceptive thresholds dropped in a parallel manner in all strains. CONCLUSION: The results suggest that chronic nerve injury evoked hypernociception may be contributed by genetic differences of descending serotonergic inhibitory control.


Asunto(s)
Dolor/metabolismo , Serotonina/metabolismo , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Formaldehído , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Hiperalgesia/complicaciones , Hiperalgesia/metabolismo , Hiperalgesia/patología , Inflamación/complicaciones , Inflamación/metabolismo , Inflamación/patología , Masculino , Mesencéfalo/metabolismo , Mesencéfalo/patología , Ratones , Ratones Endogámicos , Neuralgia/complicaciones , Neuralgia/metabolismo , Neuralgia/patología , Nociceptores/metabolismo , Nociceptores/patología , Dolor/complicaciones , Dolor/patología , Células del Asta Posterior/metabolismo , Células del Asta Posterior/patología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Nervio Ciático/lesiones , Nervio Ciático/metabolismo , Nervio Ciático/patología , Serotonina/biosíntesis , Especificidad de la Especie , Regulación hacia Arriba
7.
Neurosci Lett ; 485(3): 208-11, 2010 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-20849921

RESUMEN

In the adult mammalian brain the subependymal layer of the lateral ventricles houses neural stem cells giving rise to young neurons migrating towards the olfactory bulb. The molecular cues controlling essential functions within the neurogenesis pathway such as proliferation, short and long distance migration, differentiation and functional integration are poorly understood. Neural progenitors in situ express the tissue nonspecific form of alkaline phosphatase (TNAP), a cell surface-located nonspecific phosphomonoesterase capable of hydrolyzing extracellular nucleotides. To gain insight into the functional role of TNAP in cultured multipotent neural stem cells we applied a knockdown protocol using RNA interference with shRNA and retroviral infection. We show that TNAP knockdown reduces cell proliferation and differentiation into neurons or oligodendrocytes. This effect is abrogated by addition of alkaline phosphatase to the culture medium. Our results suggest that TNAP is essential for NSC proliferation and differentiation in vitro and possibly also in vivo.


Asunto(s)
Fosfatasa Alcalina/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proliferación Celular , Células-Madre Neurales/enzimología , Células-Madre Neurales/fisiología , Fosfatasa Alcalina/fisiología , Animales , Western Blotting , Adhesión Celular/fisiología , Células Cultivadas , Inmunohistoquímica , Ratones , Ratones Transgénicos , Células Madre Multipotentes/fisiología , Neuronas/fisiología , Oligodendroglía/fisiología , Interferencia de ARN , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Interferente Pequeño/biosíntesis , ARN Interferente Pequeño/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA