Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Dev Cell ; 59(1): 20-32.e6, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38096824

RESUMEN

Eccrine sweat glands are indispensable for human thermoregulation and, similar to other mammalian skin appendages, form from multipotent epidermal progenitors. Limited understanding of how epidermal progenitors specialize to form these vital organs has precluded therapeutic efforts toward their regeneration. Herein, we applied single-nucleus transcriptomics to compare the expression content of wild-type, eccrine-forming mouse skin to that of mice harboring a skin-specific disruption of Engrailed 1 (En1), a transcription factor that promotes eccrine gland formation in humans and mice. We identify two concurrent but disproportionate epidermal transcriptomes in the early eccrine anlagen: one that is shared with hair follicles and one that is En1 dependent and eccrine specific. We demonstrate that eccrine development requires the induction of a dermal niche proximal to each developing gland in humans and mice. Our study defines the signatures of eccrine identity and uncovers the eccrine dermal niche, setting the stage for targeted regeneration and comprehensive skin repair.


Asunto(s)
Glándulas Ecrinas , Epidermis , Humanos , Ratones , Animales , Epidermis/metabolismo , Glándulas Ecrinas/metabolismo , Piel , Folículo Piloso/metabolismo , Regulación de la Expresión Génica , Mamíferos
2.
PLoS Genet ; 19(2): e1010614, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36745673

RESUMEN

Enhancers are context-specific regulators of expression that drive biological complexity and variation through the redeployment of conserved genes. An example of this is the enhancer-mediated control of Engrailed 1 (EN1), a pleiotropic gene whose expression is required for the formation of mammalian eccrine sweat glands. We previously identified the En1 candidate enhancer (ECE) 18 cis-regulatory element that has been highly and repeatedly derived on the human lineage to potentiate ectodermal EN1 and induce our species' uniquely high eccrine gland density. Intriguingly, ECE18 quantitative activity is negligible outside of primates and ECE18 is not required for En1 regulation and eccrine gland formation in mice, raising the possibility that distinct enhancers have evolved to modulate the same trait. Here we report the identification of the ECE20 enhancer and show it has conserved functionality in mouse and human developing skin ectoderm. Unlike ECE18, knock-out of ECE20 in mice reduces ectodermal En1 and eccrine gland number. Notably, we find ECE20, but not ECE18, is also required for En1 expression in the embryonic mouse brain, demonstrating that ECE20 is a pleiotropic En1 enhancer. Finally, that ECE18 deletion does not potentiate the eccrine phenotype of ECE20 knock-out mice supports the secondary incorporation of ECE18 into the regulation of this trait in primates. Our findings reveal that the mammalian En1 regulatory machinery diversified to incorporate both shared and lineage-restricted enhancers to regulate the same phenotype, and also have implications for understanding the forces that shape the robustness and evolvability of developmental traits.


Asunto(s)
Genes Homeobox , Proteínas de Homeodominio , Ratones , Animales , Humanos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Ratones Noqueados , Fenotipo , Glándulas Sudoríparas/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
3.
J Invest Dermatol ; 143(8): 1529-1537.e2, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36804570

RESUMEN

XEDAR is a member of the TNF receptor subfamily and a mediator of the ectodysplasin (EDA) pathway. EDA signaling plays evolutionarily conserved roles in the development of the ectodermal appendage organ class, which includes hair, eccrine sweat glands, and mammary glands. Loss-of-function sequence variants of EDA, which encodes the two major ligand isoforms, EDA-A1 and EDA-A2, result in X-linked hypohidrotic ectodermal dysplasia characterized by defects in two or more types of ectodermal appendages. EDA-A1 and EDA-A2 signal through the receptors EDAR and XEDAR, respectively. Although the contributions of the EDA-A1/EDAR signaling pathway to EDA-dependent ectodermal appendage phenotypes have been extensively characterized, the significance of the EDA-A2/XEDAR branch of the pathway has remained obscure. In this study, we report the phenotypic consequences of disrupting the EDA-A2/XEDAR pathway on mammary gland differentiation and growth. Using a mouse Xedar knockout model, we show that Xedar has a specific and temporally restricted role in promoting late pubertal growth and branching of the mammary epithelium that can be influenced by genetic background. Our findings implicate Xedar in ectodermal appendage development and suggest that the EDA-A2/XEDAR signaling axis contributes to the etiology of EDA-dependent mammary phenotypes.


Asunto(s)
Ectodisplasinas , Proteínas de la Membrana , Ectodisplasinas/genética , Ectodisplasinas/metabolismo , Proteínas de la Membrana/genética , Morfogénesis , Receptores del Factor de Necrosis Tumoral , Transducción de Señal , Animales , Ratones
5.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33850016

RESUMEN

Humans sweat to cool their bodies and have by far the highest eccrine sweat gland density among primates. Humans' high eccrine gland density has long been recognized as a hallmark human evolutionary adaptation, but its genetic basis has been unknown. In humans, expression of the Engrailed 1 (EN1) transcription factor correlates with the onset of eccrine gland formation. In mice, regulation of ectodermal En1 expression is a major determinant of natural variation in eccrine gland density between strains, and increased En1 expression promotes the specification of more eccrine glands. Here, we show that regulation of EN1 has evolved specifically on the human lineage to promote eccrine gland formation. Using comparative genomics and validation of ectodermal enhancer activity in mice, we identified a human EN1 skin enhancer, hECE18. We showed that multiple epistatically interacting derived substitutions in the human ECE18 enhancer increased its activity compared with nonhuman ape orthologs in cultured keratinocytes. Repression of hECE18 in human cultured keratinocytes specifically attenuated EN1 expression, indicating this element positively regulates EN1 in this context. In a humanized enhancer knock-in mouse, hECE18 increased developmental En1 expression in the skin to induce the formation of more eccrine glands. Our study uncovers a genetic basis contributing to the evolution of one of the most singular human adaptations and implicates multiple interacting mutations in a single enhancer as a mechanism for human evolutionary change.


Asunto(s)
Regulación de la Temperatura Corporal/genética , Regulación de la Temperatura Corporal/fisiología , Proteínas de Homeodominio/genética , Animales , Evolución Biológica , Glándulas Ecrinas/metabolismo , Glándulas Ecrinas/fisiología , Ectodermo , Elementos de Facilitación Genéticos/genética , Evolución Molecular , Proteínas de Homeodominio/metabolismo , Humanos , Queratinocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Secuencias Reguladoras de Ácidos Nucleicos/genética , Piel/metabolismo , Sudoración/genética , Sudoración/fisiología , Factores de Transcripción/genética
6.
Nat Ecol Evol ; 3(8): 1233-1240, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31263232

RESUMEN

The evolution of vertebrates from an ancestral chordate was accompanied by the acquisition of a predatory lifestyle closely associated to the origin of a novel anterior structure, the highly specialized head. While the vertebrate head mesoderm is unsegmented, the paraxial mesoderm of the earliest divergent chordate clade, the cephalochordates (amphioxus), is fully segmented in somites. We have previously shown that fibroblast growth factor signalling controls the formation of the most anterior somites in amphioxus; therefore, unravelling the fibroblast growth factor signalling downstream effectors is of crucial importance to shed light on the evolutionary origin of vertebrate head muscles. By using a comparative RNA sequencing approach and genetic functional analyses, we show that several transcription factors, such as Six1/2, Pax3/7 and Zic, act in combination to ensure the formation of three different somite populations. Interestingly, these proteins are orthologous to key regulators of trunk, and not head, muscle formation in vertebrates. Contrary to prevailing thinking, our results suggest that the vertebrate head mesoderm is of visceral and not paraxial origin and support a multistep evolutionary scenario for the appearance of the unsegmented mesoderm of the vertebrates new 'head'.


Asunto(s)
Anfioxos , Animales , Regulación del Desarrollo de la Expresión Génica , Mesodermo , Somitos , Vertebrados
8.
Nature ; 564(7734): 64-70, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30464347

RESUMEN

Vertebrates have greatly elaborated the basic chordate body plan and evolved highly distinctive genomes that have been sculpted by two whole-genome duplications. Here we sequence the genome of the Mediterranean amphioxus (Branchiostoma lanceolatum) and characterize DNA methylation, chromatin accessibility, histone modifications and transcriptomes across multiple developmental stages and adult tissues to investigate the evolution of the regulation of the chordate genome. Comparisons with vertebrates identify an intermediate stage in the evolution of differentially methylated enhancers, and a high conservation of gene expression and its cis-regulatory logic between amphioxus and vertebrates that occurs maximally at an earlier mid-embryonic phylotypic period. We analyse regulatory evolution after whole-genome duplications, and find that-in vertebrates-over 80% of broadly expressed gene families with multiple paralogues derived from whole-genome duplications have members that restricted their ancestral expression, and underwent specialization rather than subfunctionalization. Counter-intuitively, paralogues that restricted their expression increased the complexity of their regulatory landscapes. These data pave the way for a better understanding of the regulatory principles that underlie key vertebrate innovations.


Asunto(s)
Regulación de la Expresión Génica , Genómica , Anfioxos/genética , Vertebrados/genética , Animales , Tipificación del Cuerpo/genética , Metilación de ADN , Humanos , Anfioxos/embriología , Anotación de Secuencia Molecular , Regiones Promotoras Genéticas , Transcriptoma/genética
9.
J Thorac Cardiovasc Surg ; 156(6): 2168-2169, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30098803
10.
Nat Genet ; 48(3): 336-41, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26829752

RESUMEN

The HoxA and HoxD gene clusters of jawed vertebrates are organized into bipartite three-dimensional chromatin structures that separate long-range regulatory inputs coming from the anterior and posterior Hox-neighboring regions. This architecture is instrumental in allowing vertebrate Hox genes to pattern disparate parts of the body, including limbs. Almost nothing is known about how these three-dimensional topologies originated. Here we perform extensive 4C-seq profiling of the Hox cluster in embryos of amphioxus, an invertebrate chordate. We find that, in contrast to the architecture in vertebrates, the amphioxus Hox cluster is organized into a single chromatin interaction domain that includes long-range contacts mostly from the anterior side, bringing distant cis-regulatory elements into contact with Hox genes. We infer that the vertebrate Hox bipartite regulatory system is an evolutionary novelty generated by combining ancient long-range regulatory contacts from DNA in the anterior Hox neighborhood with new regulatory inputs from the posterior side.


Asunto(s)
Tipificación del Cuerpo/genética , Evolución Molecular , Proteínas de Homeodominio/biosíntesis , Anfioxos/genética , Animales , Cromatina/genética , Secuencia Conservada/genética , Extremidades/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Anfioxos/crecimiento & desarrollo , Familia de Multigenes , Filogenia , Vertebrados/genética , Vertebrados/crecimiento & desarrollo
11.
PLoS One ; 10(9): e0136587, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26371756

RESUMEN

During vertebrate development, the paraxial mesoderm becomes segmented, forming somites that will give rise to dermis, axial skeleton and skeletal muscles. Although recently challenged, the "clock and wavefront" model for somitogenesis explains how interactions between several cell-cell communication pathways, including the FGF, RA, Wnt and Notch signals, control the formation of these bilateral symmetric blocks. In the cephalochordate amphioxus, which belongs to the chordate phylum together with tunicates and vertebrates, the dorsal paraxial mesendoderm also periodically forms somites, although this process is asymmetric and extends along the whole body. It has been previously shown that the formation of the most anterior somites in amphioxus is dependent upon FGF signalling. However, the signals controlling somitogenesis during posterior elongation in amphioxus are still unknown. Here we show that, contrary to vertebrates, RA and FGF signals act independently during posterior elongation and that they are not mandatory for posterior somites to form. Moreover, we show that RA is not able to buffer the left/right asymmetry machinery that is controlled through the asymmetric expression of Nodal pathway actors. Our results give new insights into the evolution of the somitogenesis process in chordates. They suggest that RA and FGF pathways have acquired specific functions in the control of somitogenesis in vertebrates. We propose that the "clock and wavefront" system was selected specifically in vertebrates in parallel to the development of more complex somite-derived structures but that it was not required for somitogenesis in the ancestor of chordates.


Asunto(s)
Factor de Crecimiento Epidérmico/metabolismo , Anfioxos/embriología , Somitos/embriología , Tretinoina/farmacología , Vía de Señalización Wnt/fisiología , Animales , Receptores Notch/metabolismo , Vía de Señalización Wnt/efectos de los fármacos
12.
J Exp Zool B Mol Dev Evol ; 320(6): 375-84, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23677533

RESUMEN

The emergence of vertebrates is closely associated to the evolution of mineralized bone tissue. However, the molecular basis underlying the origin and subsequent diversification of the skeletal mineralized matrix is still poorly understood. One efficient way to tackle this issue is to compare the expression, between vertebrate species, of osteoblastic genes coding for bone matrix proteins. In this work, we have focused on the evolution of the network forming collagen family which contains the Col8a1, Col8a2, and Col10a1 genes. Both phylogeny and synteny reveal that these three paralogues are vertebrate-specific and derive from two independent duplications in the vertebrate lineage. To shed light on the evolution of this family, we have analyzed the osteoblastic expression of the network forming collagens in endochondral and intramembraneous skeletal elements of the amphibian Xenopus tropicalis. Remarkably, we find that amphibian osteoblasts express Col10a1, a gene strongly expressed in osteoblasts in actinopterygians but not in amniotes. In addition, while Col8a1 is known to be robustly expressed in mammalian osteoblasts, the expression levels of its amphibian orthologue are dramatically reduced. Our work reveals that while a skeletal expression of network forming collagen members is widespread throughout vertebrates, osteoblasts from divergent vertebrate lineages express different combinations of network forming collagen paralogues.


Asunto(s)
Matriz Ósea/fisiología , Colágeno/fisiología , Evolución Molecular , Xenopus/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Colágeno/genética , Datos de Secuencia Molecular , Filogenia , ARN/química , ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Análisis de Secuencia de ADN , Xenopus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA