Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36677980

RESUMEN

The concept of nanosatellite technology becomes a viable platform for earth and space observation research to minimize cost and build time for the payload. The communication approach is the essential fundamental attribute of a satellite, of which the antenna is a crucial component for forming a communication link between the nanosatellite and the earth. The nanosatellite antenna must comply with some special requirements like compact size, lightweight, and high gain with a space-compatible structure. This paper proposes a compact metamaterial-based Ku-band antenna with circular polarization for the nanosatellite communication system. The designed antenna obtained an impedance bandwidth of 2.275 GHz with a realized gain of 6.74 dBi and 3 dB axial beamwidth of 165° at 12.10 GHz. The overall antenna size of the designed is 0.51λ × 0.51λ × 0.17λ, which is fabricated on Rogers 5880 substrate material. The antenna results performance has been examined with a 1 U nanosatellite structure and found suitable to integrate with metallic and nonmetallic surfaces of any miniature nanosatellite structure.

2.
Nanomaterials (Basel) ; 12(18)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36144930

RESUMEN

The concept of the nanosatellite comes into play in launching miniaturized versions of satellites or regarding payloads with minimizing cost and building time. The economic affordability of nanosatellites has been promoted with a view to launching various nanosatellite missions. The communication system is one of the most important aspects of a satellite. The antenna is a key element for establishing a communication link between the earth and the nanosatellite. The antenna and solar panel of the nanosatellite are two of the most vital components that profoundly impact antenna type and design. This paper proposes a non-deployable lower ultra-high frequency (UHF) antenna, strategically mounted on the satellite body, to address the constraints of deployment complexity and solar panel integration. The antenna was fabricated and performances measured with a 1U nanosatellite structure, which achieved resonance frequency at 401 MHz frequency bands with 0.672 dBi realized gain. The overall antenna size is 0.13λ × 0.13λ × 0.006λ. The major challenges addressed by the proposed antenna are to design a nanosatellite-compatible lower UHF antenna and to ensure solar irradiance into the solar panel to minimize input power scarcity.

3.
ScientificWorldJournal ; 2016: 3560938, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27088125

RESUMEN

A low-cost coplanar waveguide fed compact ultrawideband (UWB) antenna with band rejection characteristics for wireless local area network (WLAN) is proposed. The notch band characteristic is achieved by etching half wavelength C-shaped annular ring slot in the radiating patch. By properly choosing the radius and position of the slot, the notch band can be adjusted and controlled. With an overall size of 18.7 mm × 17.6 mm, the antenna turns out to be one of the smallest UWB antennas with band-notched characteristics. It has a wide fractional bandwidth of 130% (2.9-13.7 GHz) with VSWR < 2 and rejecting IEEE 802.11a and HIPERLAN/2 frequency band of 5.1-5.9 GHz. Stable omnidirectional radiation patterns in the H plane with an average gain of 4.4 dBi are obtained. The band-notch mechanism of the proposed antenna is examined by HFSS simulator. A good agreement is found between measured and simulated results indicating that the proposed antenna is well suited for integration into portable devices for UWB applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA