Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mult Scler ; 29(10): 1216-1228, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37548214

RESUMEN

BACKGROUND: Race and ancestry influence the course of multiple sclerosis (MS). OBJECTIVES: Explore clinical characteristics of MS and neuromyelitis optica spectrum disorder (NMOSD) in Asian American patients. METHODS: Chart review was performed for 282 adults with demyelinating disease who self-identified as Asian at a single North American MS center. Demographics and clinical characteristics were compared to non-Asian MS patients and by region of Asian ancestry. RESULTS: Region of ancestry was known for 181 patients. Most (94.7%) preferred English, but fewer East Asian patients did (80%, p = 0.0001). South Asian patients had higher neighborhood household income (p = 0.002). Diagnoses included MS (76.2%) and NMOSD (13.8%). More patients with NMOSD than MS were East and Southeast Asian (p = 0.004). For MS patients, optic nerve and spinal cord involvement were similar across regions of ancestry. Asian MS patients were younger at symptom onset and diagnosis than non-Asian MS patients. MS Severity Scale scores were similar to non-Asian MS patients but worse among Southeast Asians (p = 0.006). CONCLUSIONS: MS severity was similar between Asian American patients and non-Asian patients. Region of ancestry was associated with differences in sociodemographics and MS severity. Further research is needed to uncover genetic, socioeconomic, or environmental factors causing these differences.


Asunto(s)
Esclerosis Múltiple , Neuromielitis Óptica , Adulto , Humanos , Acuaporina 4 , Asiático , Esclerosis Múltiple/epidemiología , Neuromielitis Óptica/epidemiología , Nervio Óptico
2.
Mult Scler Relat Disord ; 70: 104484, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36608538

RESUMEN

BACKGROUND: Adequate response to the SARS-CoV-2 vaccine represents an important treatment goal in caring for patients with multiple sclerosis (MS) during the ongoing COVID-19 pandemic. Previous data so far have demonstrated lower spike-specific IgG responses following two SARS-CoV-2 vaccinations in MS patients treated with sphingosine-1-phosphate (S1P) receptor modulators and anti-CD20 monoclonal antibodies (mAb) compared to other disease modifying therapies (DMTs). It is unknown whether subsequent vaccinations can augment antibody responses in these patients. OBJECTIVES: The goal of this observational study was to determine the effects of a third SARS-CoV-2 vaccination on antibody and T cell responses in MS patients treated with anti-CD20 mAb or S1P receptor modulators. METHODS: Vaccine responses in patients treated with anti-CD20 antibodies (ocrelizumab and ofatumumab) or S1P receptor modulators (fingolimod and siponimod) were evaluated before and after third SARS-CoV-2 vaccination as part of an ongoing longitudinal study. Total spike protein and spike receptor binding domain (RBD)-specific IgG responses were measured by Luminex bead-based assay. Spike-specific CD4+ and CD8+ T cell responses were measured by activation-induced marker expression. RESULTS: MS patients and healthy controls were enrolled before and following SARS-CoV-2 vaccination. A total of 31 MS patients (n = 10 ofatumumab, n = 13 ocrelizumab, n = 8 S1P) and 10 healthy controls were evaluated through three SARS-CoV-2 vaccinations. Compared to healthy controls, total spike IgG was significantly lower in anti-CD20 mAb-treated patients and spike RBD IgG was significantly lower in anti-CD20 mAb and S1P-treated patients following a third vaccination. While seropositivity was 100% in healthy controls after a third vaccination, total spike IgG and spike RBD IgG seropositivity were lower in ofatumumab (60% and 60%, respectively), ocrelizumab (85% and 46%, respectively), and S1P-treated patients (100% and 75%, respectively). Longer treatment duration, including prior treatment history, appeared to negatively impact antibody responses. Spike-specific CD4+ and CD8+ T cell responses were well maintained across all groups following a third vaccination. Finally, immune responses were also compared in patients who were vaccinated prior to or following ofatumumab treatment. Antibody responses were significantly higher in those patients who received their primary SARS-CoV-2 vaccination prior to initiating ofatumumab treatment. CONCLUSIONS: This study adds to the evolving understanding of SARS-CoV-2 vaccine responses in people with MS treated with disease-modifying therapies (DMTs) known to suppress humoral immunity. Our findings provide important information for optimizing vaccine immunity in at-risk MS patient populations.


Asunto(s)
COVID-19 , Esclerosis Múltiple , Moduladores de los Receptores de fosfatos y esfingosina 1 , Humanos , Inmunidad Humoral , Vacunas contra la COVID-19 , Receptores de Esfingosina-1-Fosfato , SARS-CoV-2 , Estudios Longitudinales , Pandemias , Vacunación , Anticuerpos Monoclonales , Inmunoglobulina G , Anticuerpos Antivirales
4.
JCI Insight ; 7(4)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35030101

RESUMEN

BACKGROUNDVaccine-elicited adaptive immunity is a prerequisite for control of SARS-CoV-2 infection. Multiple sclerosis (MS) disease-modifying therapies (DMTs) differentially target humoral and cellular immunity. A comprehensive comparison of the effects of MS DMTs on SARS-CoV-2 vaccine-specific immunity is needed, including quantitative and functional B and T cell responses.METHODSSpike-specific Ab and T cell responses were measured before and following SARS-CoV-2 vaccination in a cohort of 80 study participants, including healthy controls and patients with MS in 6 DMT groups: untreated and treated with glatiramer acetate (GA), dimethyl fumarate (DMF), natalizumab (NTZ), sphingosine-1-phosphate (S1P) receptor modulators, and anti-CD20 mAbs. Anti-spike-Ab responses were assessed by Luminex assay, VirScan, and pseudovirus neutralization. Spike-specific CD4+ and CD8+ T cell responses were characterized by activation-induced marker and cytokine expression and tetramer.RESULTSAnti-spike IgG levels were similar between healthy control participants and patients with untreated MS and those receiving GA, DMF, or NTZ but were reduced in anti-CD20 mAb- and S1P-treated patients. Anti-spike seropositivity in anti-CD20 mAb-treated patients was correlated with CD19+ B cell levels and inversely correlated with cumulative treatment duration. Spike epitope reactivity and pseudovirus neutralization were reduced in anti-CD20 mAb- and S1P-treated patients. Spike-specific CD4+ and CD8+ T cell reactivity remained robust across all groups, except in S1P-treated patients, in whom postvaccine CD4+ T cell responses were attenuated.CONCLUSIONThese findings from a large cohort of patients with MS exposed to a wide spectrum of MS immunotherapies have important implications for treatment-specific COVID-19 clinical guidelines.FUNDINGNIH grants 1K08NS107619, K08NS096117, R01AI159260, R01NS092835, R01AI131624, and R21NS108159; NMSS grants TA-1903-33713 and RG1701-26628; Westridge Foundation; Chan Zuckerberg Biohub; Maisin Foundation.


Asunto(s)
Anticuerpos Antivirales/biosíntesis , Vacunas contra la COVID-19/inmunología , Esclerosis Múltiple/terapia , SARS-CoV-2/inmunología , Linfocitos T/inmunología , Anticuerpos Antivirales/inmunología , Humanos , Esclerosis Múltiple/inmunología
5.
Front Neurol ; 12: 728700, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34744969

RESUMEN

The development of autoimmune antibody panels has improved the diagnosis of paraneoplastic neurological disorders (PNDs) of the brain and spinal cord. Here, we present a case of a woman with a history of breast cancer who presented with a subacute sensory ataxia that progressed over 18 months. Her examination and diagnostic studies were consistent with a myelopathy. Metabolic, infectious, and autoimmune testing were non-diagnostic. However, she responded to empirical immunosuppression, prompting further workup for an autoimmune etiology. An unbiased autoantibody screen utilizing phage display immunoprecipitation sequencing (PhIP-Seq) identified antibodies to the anti-Yo antigens cerebellar degeneration related protein 2 like (CDR2L) and CDR2, which were subsequently validated by immunoblot and cell-based overexpression assays. Furthermore, CDR2L protein expression was restricted to HER2 expressing tumor cells in the patient's breast tissue. Recent evidence suggests that CDR2L is likely the primary antigen in anti-Yo paraneoplastic cerebellar degeneration, but anti-Yo myelopathy is poorly characterized. By immunostaining, we detected neuronal CDR2L protein expression in the murine and human spinal cord. This case demonstrates the diagnostic utility of unbiased assays in patients with suspected PNDs, supports prior observations that anti-Yo PND can be associated with isolated myelopathy, and implicates CDR2L as a potential antigen in the spinal cord.

6.
JAMA Neurol ; 78(12): 1503-1509, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34694339

RESUMEN

Importance: Neuropsychiatric manifestations of COVID-19 have been reported in the pediatric population. Objective: To determine whether anti-SARS-CoV-2 and autoreactive antibodies are present in the cerebrospinal fluid (CSF) of pediatric patients with COVID-19 and subacute neuropsychiatric dysfunction. Design, Setting, and Participants: This case series includes 3 patients with recent SARS-CoV-2 infection as confirmed by reverse transcriptase-polymerase chain reaction or IgG serology with recent exposure history who were hospitalized at the University of California, San Francisco Benioff Children's Hospital and for whom a neurology consultation was requested over a 5-month period in 2020. During this period, 18 total children were hospitalized and tested positive for acute SARS-CoV-2 infection by reverse transcriptase-polymerase chain reaction or rapid antigen test. Main Outcomes and Measures: Detection and characterization of CSF anti-SARS-CoV-2 IgG and antineural antibodies. Results: Of 3 included teenaged patients, 2 patients had intrathecal anti-SARS-CoV-2 antibodies. CSF IgG from these 2 patients also indicated antineural autoantibodies on anatomic immunostaining. Autoantibodies targeting transcription factor 4 (TCF4) in 1 patient who appeared to have a robust response to immunotherapy were also validated. Conclusions and Relevance: Pediatric patients with COVID-19 and prominent subacute neuropsychiatric symptoms, ranging from severe anxiety to delusional psychosis, may have anti-SARS-CoV-2 and antineural antibodies in their CSF and may respond to immunotherapy.


Asunto(s)
Anticuerpos Antivirales/líquido cefalorraquídeo , Autoanticuerpos/líquido cefalorraquídeo , COVID-19/complicaciones , COVID-19/inmunología , Trastornos Mentales/líquido cefalorraquídeo , Trastornos Mentales/etiología , Enfermedades del Sistema Nervioso/líquido cefalorraquídeo , Enfermedades del Sistema Nervioso/etiología , Adolescente , Animales , Ansiedad/etiología , Ansiedad/psicología , Autoinmunidad , Femenino , Humanos , Masculino , Fumar Marihuana/inmunología , Ratones , Trastornos del Movimiento/etiología , Examen Neurológico , Factor de Transcripción 4/inmunología
7.
medRxiv ; 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34580672

RESUMEN

Vaccine-elicited adaptive immunity is an essential prerequisite for effective prevention and control of coronavirus 19 (COVID-19). Treatment of multiple sclerosis (MS) involves a diverse array of disease-modifying therapies (DMTs) that target antibody and cell-mediated immunity, yet a comprehensive understanding of how MS DMTs impact SARS-CoV-2 vaccine responses is lacking. We completed a detailed analysis of SARS-CoV-2 vaccine-elicited spike antigen-specific IgG and T cell responses in a cohort of healthy controls and MS participants in six different treatment categories. Two specific DMT types, sphingosine-1-phosphate (S1P) receptor modulators and anti-CD20 monoclonal antibodies (mAb), resulted in significantly reduced spike-specific IgG responses. Longer duration of anti-CD20 mAb treatment prior to SARS-CoV-2 vaccination were associated with absent antibody responses. Except for reduced CD4+ T cell responses in S1P-treated patients, spike-specific CD4+ and CD8+ T cell reactivity remained robust across all MS treatment types. These findings have important implications for clinical practice guidelines and vaccination recommendations in MS patients and other immunosuppressed populations.

8.
Cell Rep Med ; 2(5): 100288, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33969321

RESUMEN

Individuals with coronavirus disease 2019 (COVID-19) frequently develop neurological symptoms, but the biological underpinnings of these phenomena are unknown. Through single-cell RNA sequencing (scRNA-seq) and cytokine analyses of cerebrospinal fluid (CSF) and blood from individuals with COVID-19 with neurological symptoms, we find compartmentalized, CNS-specific T cell activation and B cell responses. All affected individuals had CSF anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies whose target epitopes diverged from serum antibodies. In an animal model, we find that intrathecal SARS-CoV-2 antibodies are present only during brain infection and not elicited by pulmonary infection. We produced CSF-derived monoclonal antibodies from an individual with COVID-19 and found that these monoclonal antibodies (mAbs) target antiviral and antineural antigens, including one mAb that reacted to spike protein and neural tissue. CSF immunoglobulin G (IgG) from 5 of 7 patients showed antineural reactivity. This immune survey reveals evidence of a compartmentalized immune response in the CNS of individuals with COVID-19 and suggests a role of autoimmunity in neurologic sequelae of COVID-19.

9.
Int J Spine Surg ; 15(2): 251-258, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33900982

RESUMEN

BACKGROUND: Polyetheretherketone (PEEK) rods were clinically introduced in the mid-2000s as an alternative to titanium (Ti) rods for posterior instrumented lumbar spine fusion, theorized to reduce the risk of adjacent segment disease (ASD). However, few studies have follow-up beyond 2 years. Consequently, we conducted a matched cohort study using data from Kaiser Permanente's spine registry to compare the 2 rod systems and risk for outcomes. METHODS: Patients aged ≥18 undergoing first posterior lumbar fusion for a degenerative diagnosis from 2009 to 2018 using either a PEEK or a Ti rod were identified. Fusions using Ti rods were 2:1 propensity score matched to PEEK rods on the following factors: patient age, body mass index, smoking, American Society of Anesthesiologists classification, diagnosis, interbody use, bone morphogenic protein use, number of levels fused, fusion levels, and operative year. The matched sample included 154 PEEK and 308 Ti fusions. We used Cox regression to evaluate ASD and nonunion, and logistic regression to evaluate 90-day emergency department (ED) visit, readmission, and complication. RESULTS: We did not observe a difference in risk for ASD (hazard ratio = 1.02, 95% confidence interval [CI] = 0.66-1.59) or ED visit (odds ratio [OR] = 0.88, 95% CI = 0.48-1.59). A lower likelihood of readmission (OR = 0.34, 95% CI = 0.13-0.94) was observed following PEEK fusion compared with Ti. No nonunions or 90-day complications were observed for the PEEK group; 5 (2-year cumulative incidence = 0.7%) nonunions and 4 (1.3%) complications were observed for the Ti group. CONCLUSIONS: Our multicenter study did not support the hypothesis that PEEK rods are associated with a lower ASD risk. Reasons for readmission need to be identified to better understand the differences observed here. Further study of patients with TLIF using Ti and PEEK rods and posterolateral fusion with Ti and PEEK rods is needed. CLINICAL RELEVANCE: The present study adds to the literature supporting their midterm effectiveness of PEEK rods compared with Ti rods for both their safety and their effectiveness at the 5-7-year follow-up. LEVEL OF EVIDENCE: 3.

10.
bioRxiv ; 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-32935102

RESUMEN

One third of COVID-19 patients develop significant neurological symptoms, yet SARS-CoV-2 is rarely detected in central nervous system (CNS) tissue, suggesting a potential role for parainfectious processes, including neuroimmune responses. We therefore examined immune parameters in cerebrospinal fluid (CSF) and blood samples from a cohort of patients with COVID-19 and significant neurological complications. We found divergent immunological responses in the CNS compartment, including increased levels of IL-12 and IL-12-associated innate and adaptive immune cell activation. Moreover, we found increased proportions of B cells in the CSF relative to the periphery and evidence of clonal expansion of CSF B cells, suggesting a divergent intrathecal humoral response to SARS-CoV-2. Indeed, all COVID-19 cases examined had anti-SARS-CoV-2 IgG antibodies in the CSF whose target epitopes diverged from serum antibodies. We directly examined whether CSF resident antibodies target self-antigens and found a significant burden of CNS autoimmunity, with the CSF from most patients recognizing neural self-antigens. Finally, we produced a panel of monoclonal antibodies from patients' CSF and show that these target both anti-viral and anti-neural antigens-including one mAb specific for the spike protein that also recognizes neural tissue. This exploratory immune survey reveals evidence of a compartmentalized and self-reactive immune response in the CNS meriting a more systematic evaluation of neurologically impaired COVID-19 patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA