Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Behav Brain Res ; 443: 114329, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36746310

RESUMEN

BACKGROUND: The tremor mutant mice present motor impairments comprised of whole-body tremors, ataxia, decreased exploratory behavior, and audiogenic seizures. OBJECTIVES: This study aims to investigate the development of motor dysfunction in this mutant mouse and the relationships with cortical, striatal, and cerebellar levels of GABA, glutamate, glycine, dopamine (DA), serotonin (5-HT), noradrenaline (NOR), and its metabolites. The serum cytokines levels, myelin content, and the astrocytic expression of the glial fibrillary acidic protein (GFAP) investigated the possible influence of inflammation in motor dysfunction. RESULTS: Relative to wild-type (WT) mice, the tremor mice presented: increased tremors and bradykinesia associated with postural instability, decreased range of motion, and difficulty in initiating voluntary movements directly proportional to age; reduced step length for right and left hindlimbs; reduced cortical GABA, glutamate and, aspartate levels, the DOPAC/DA and ratio and increased the NOR levels; in the striatum, the levels of glycine and aspartate were reduced while the HVA levels, the HVA/DA and 5HIAA/5-HT ratios increased; in the cerebellum the glycine, NOR and 5-HIAA levels increased. CONCLUSIONS: We suggest that the motor disturbances resulted mainly from the activation of the indirect striatal inhibitory pathway to the frontal cortex mediated by GABA, glutamate, and aspartate, reducing the dopaminergic activity at the prefrontal cortex, which was associated with the progressive tremor. The reduced striatal and increased cerebellar glycine levels could be partially responsible for the mutant tremor motor disturbances.


Asunto(s)
Trastornos Motores , Temblor , Ratones , Animales , Temblor/metabolismo , Serotonina/metabolismo , Ácido Aspártico/metabolismo , Convulsiones/metabolismo , Dopamina/metabolismo , Ácido Glutámico/metabolismo , Cuerpo Estriado/metabolismo , Norepinefrina/metabolismo , Neurotransmisores/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Glicina/metabolismo
2.
Bio Protoc ; 10(7): e3568, 2020 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33659538

RESUMEN

Despite the great number of test batteries already known to assess the behavior of genetically modified and inbred strains of mice, only a few of them focus on basic neurological parameters. The purpose of the battery test proposed is to settle a specific methodology to characterize the phenotype of neurological disease models in mutant or genetically modified mice. This methodology is simple and efficient in order to analyze several parameters, including general activity, sensory nervous system, sensorimotor system, central nervous system and autonomous nervous system. This can aid the choice of specific additional tests as well as the determination of an interrelationship among phenotypic alterations observed. Although being efficient for a first analysis of a mouse model, interpretation of the results must be carefully made because phenotype manifestation may vary due to many parameters, including mouse strain, environmental and housing condition, animal-experimenter interaction, sample size and tests order. It is important to consider as a critical point if handling procedures are aversive. The results acquired with the analysis of 18 parameters together provide preliminary data to characterize mouse phenotype and helps selecting more specific tests.

3.
Genes Brain Behav ; 18(8): e12568, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30891914

RESUMEN

The recessive mutant mice bate palmas (bapa) - claps in Portuguese arose from N-ethyl-N-nitrosourea mutagenesis. A single nucleotide, T > C, change in exon 13, leading to a Thr1289 Ala substitution, was identified in the lysine (K)-specific methyltransferase 2D gene (Kmt2d) located on chromosome 15. Mutations with a loss-of-function in the KMT2D gene on chromosome 12 in humans are responsible for Kabuki syndrome (KS). Phenotypic characterization of the bapa mutant was performed using a behavioral test battery to evaluate the parameters related to general activity, the sensory nervous system, the psychomotor system, and the autonomous nervous system, as well as to measure motor function and spatial memory. Relative to BALB/cJ mice, the bapa mutant showed sensory and psychomotor impairments, such as hypotonia denoted by a surface righting reflex impairment and hindquarter fall, and a reduction in the auricular reflex, suggesting hearing impairment. Additionally, the enhanced general activity showed by the increased rearing and grooming frequency, distance traveled and average speed possibly presupposes the presence of hyperactivity of bapa mice compared with the control group. A slight motor coordination dysfunction was showed in bapa mice, which had a longer crossing time on the balance beam compared with BALB/cJ controls. Male bapa mice also showed spatial gait pattern changes, such as a shorter stride length and shorter step length. In conclusion, the bapa mouse may be a valuable animal model to study the mechanisms involved in psychomotor and behavior impairments, such as hypotonia, fine motor coordination and hyperactivity linked to the Kmt2d mutation.


Asunto(s)
Anomalías Múltiples/genética , Conducta Animal , Cara/anomalías , Enfermedades Hematológicas/genética , N-Metiltransferasa de Histona-Lisina/genética , Mutación con Pérdida de Función , Proteína de la Leucemia Mieloide-Linfoide/genética , Enfermedades Vestibulares/genética , Anomalías Múltiples/fisiopatología , Animales , Modelos Animales de Enfermedad , Cara/fisiopatología , Marcha , Audición , Enfermedades Hematológicas/fisiopatología , Masculino , Ratones , Ratones Endogámicos BALB C , Movimiento , Hipotonía Muscular/genética , Reflejo , Enfermedades Vestibulares/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA