Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Org Biomol Chem ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716901

RESUMEN

The implementation of selective catalytic processes with highly active reagents is an attractive strategy that meets the modern principles of sustainable development of chemistry. In the current study, we for the first time describe the method and general principles of Cu(I)-catalyzed allylation of imines with amine adducts of allylic triorganoboranes. Triallylborane is an extremely reactive compound and cannot be used for the catalytic allylation of imines, whereas its amine adducts are ideal substrates for catalysis. The structure of the amine fragment successfully balances the safety, selectivity and stability of the allylboron reagent, allowing it to demonstrate high activity in catalytic allylation reactions, exceeding many times any known allylboranes. The obtained results are supported by quantitative kinetics data and DFT calculations. The catalytic efficacy of the system was demonstrated on model sulfinylimines (23 examples). High diastereoselectivity up to >99% was achieved, including for the gram-scale synthesis of 2-hydroxyphenyl-derivatives. Taking into account the high reactivity and unsurpassed atom-economy of amine adducts of triallylborane (AAT), they can be considered as prospective allylation reagents with Cu(I) and other appropriate metallocatalysts.

2.
Org Biomol Chem ; 21(11): 2337-2354, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36825470

RESUMEN

The design of molecules with effective anticancer properties constructed from both dually active metal complex and organic fragments is a novel trend in medicinal chemistry. This concept suggests the impact of a drug on several biological targets or the synergistic action of both fragments as a single unit. We propose that the combination of a Pd-metallocomplex fragment and an organic unit can be an interesting model for anticancer drug discovery. The first phase in the development of such suggested molecules is the synthesis of bilateral metallosystems containing bioactive 6-substituted piperidin-2-one and a palladated N-phenylpyrazolic fragment. Both fragments were incorporated into one molecule through the fused pyrazole-piperidine-2-one unit followed by pyrazol-directed cyclopalladation of the phenyl-group with Pd(OAc)2. An effect of acceleration of the rate of the palladation by NH-lactam was observed. The synthesized hybrid palladacycles have been characterized and tested for their cytotoxic activity on three cancerous cell lines as PPh3 complexes, revealing structures with potential for further development and structural optimization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA