Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Front Immunol ; 15: 1401209, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812500

RESUMEN

Introduction: Current SARS-CoV-2 strains continue to mutate and attempt to evade the antibody response elicited by previous exposures and vaccinations. In September of 2022, the first updated SARS-CoV-2 vaccines, designed to create immune responses specific for the variants circulating in 2022, were approved. These new vaccines, known commonly as the bivalent boost(er), include mRNA that encodes both the original Wuhan-Hu-1 spike protein as well as the spike protein specific to the Omicron BA.4 and BA.5 variants. Methods: We recruited volunteers from University of Massachusetts student, faculty and staff members to provide samples of blood and saliva at four different time points, including pre-boost and three times post boost and analyzed samples for antibody production as well as neutralization of virus. Results: Our data provide a comprehensive analysis of the antibody response following a single dose of the bivalent boost over a 6-month period and support previous findings that the response induced after the bivalent boost does not create a strong BA.4/BA.5-specific antibody response. Conclusion: We found no evidence of a specific anti-BA.4/BA.5 response developing over time, including in a sub-population of individuals who become infected after a single dose of the bivalent booster. Additionally, we present data that support the use of saliva samples as a reliable alternative to blood for antibody detection against specific SARS-CoV-2 antigens.


Asunto(s)
Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , SARS-CoV-2 , Saliva , Glicoproteína de la Espiga del Coronavirus , Humanos , SARS-CoV-2/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , COVID-19/inmunología , COVID-19/prevención & control , Saliva/inmunología , Saliva/virología , Vacunas contra la COVID-19/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Masculino , Femenino , Adulto , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Persona de Mediana Edad , Formación de Anticuerpos/inmunología , Adulto Joven
2.
Genesis ; 62(1): e23580, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37974491

RESUMEN

Bop1 can promote cell proliferation and is a component of the Pes1-Bop1-WDR12 (PeBoW) complex that regulates ribosomal RNA processing and biogenesis. In embryos, however, bop1 mRNA is highly enriched in the neural plate, cranial neural crest and placodes, and potentially may interact with Six1, which also is expressed in these tissues. Recent work demonstrated that during development, Bop1 is required for establishing the size of the tadpole brain, retina and cranial cartilages, as well as controlling neural tissue gene expression levels. Herein, we extend this work by assessing the effects of Bop1 knockdown at neural plate and larval stages. Loss of Bop1 expanded neural plate gene expression domains (sox2, sox11, irx1) and reduced neural crest (foxd3, sox9), placode (six1, sox11, irx1, sox9) and epidermal (dlx5) expression domains. At larval stages, Bop1 knockdown reduced the expression of several otic vesicle genes (six1, pax2, irx1, sox9, dlx5, otx2, tbx1) and branchial arch genes that are required for chondrogenesis (sox9, tbx1, dlx5). The latter was not the result of impaired neural crest migration. Together these observations indicate that Bop1 is a multifunctional protein that in addition to its well-known role in ribosomal biogenesis functions during early development to establish the craniofacial precursor domains.


Asunto(s)
Cresta Neural , Factores de Transcripción , Cresta Neural/metabolismo , Factores de Transcripción/metabolismo , Cabeza , Cráneo/metabolismo , Ribosomas/metabolismo , Regulación del Desarrollo de la Expresión Génica
3.
Cell Rep ; 42(10): 113232, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37824328

RESUMEN

TRPM7 (transient receptor potential cation channel subfamily M member 7) is a chanzyme with channel and kinase domains essential for embryo development. Using gamete-specific Trpm7-null lines, we report that TRPM7-mediated Mg2+ influx is indispensable for reaching the blastocyst stage. TRPM7 is expressed dynamically from gametes to blastocysts; displays stage-specific localization on the plasma membrane, cytoplasm, and nucleus; and undergoes cleavage that produces C-terminal kinase fragments. TRPM7 underpins Mg2+ homeostasis, and excess Mg2+ but not Zn2+ or Ca2+ overcomes the arrest of Trpm7-null embryos; expressing Trpm7 mRNA restores development, but mutant versions fail or are partially rescued. Transcriptomic analyses of Trpm7-null embryos reveal an abundance of oxidative stress-pathway genes, confirmed by mitochondrial dysfunction, and a reduction in transcription factor networks essential for proliferation; Mg2+ supplementation corrects these defects. Hence, TRPM7 underpins Mg2+ homeostasis in preimplantation embryos, prevents oxidative stress, and promotes gene expression patterns necessary for developmental progression and cell-lineage specification.


Asunto(s)
Desarrollo Embrionario , Magnesio , Canales Catiónicos TRPM , Animales , Ratones , Citoplasma/metabolismo , Regulación de la Expresión Génica , Células Germinativas/metabolismo , Canales Catiónicos TRPM/metabolismo , Magnesio/metabolismo
4.
Front Cell Dev Biol ; 11: 1274788, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854072

RESUMEN

Introduction: The Six1 transcription factor plays important roles in the development of cranial sensory organs, and point mutations underlie craniofacial birth defects. Because Six1's transcriptional activity can be modulated by interacting proteins, we previously screened for candidate interactors and identified zinc-finger MYM-containing protein 4 (Zmym4) by its inclusion of a few domains with a bona fide cofactor, Sine oculis binding protein (Sobp). Although Zmym4 has been implicated in regulating early brain development and certain cancers, its role in craniofacial development has not previously been described. Methods: We used co-immunoprecipitation and luciferase-reporter assays in cultured cells to test interactions between Zmym4 and Six1. We used knock-down and overexpression of Zmym4 in embryos to test for its effects on early ectodermal gene expression, neural crest migration and craniofacial cartilage formation. Results: We found no evidence that Zmym4 physically or transcriptionally interacts with Six1 in cultured cells. Nonetheless, knockdown of endogenous Zmym4 in embryos resulted in altered early cranial gene expression, including those expressed in the neural border, neural plate, neural crest and preplacodal ectoderm. Experimentally increasing Zmym4 levels had minor effects on neural border or neural plate genes, but altered the expression of neural crest and preplacodal genes. At larval stages, genes expressed in the otic vesicle and branchial arches showed reduced expression in Zmym4 morphants. Although we did not detect defects in neural crest migration into the branchial arches, loss of Zmym4 resulted in aberrant morphology of several craniofacial cartilages. Discussion: Although Zmym4 does not appear to function as a Six1 transcriptional cofactor, it plays an important role in regulating the expression of embryonic cranial genes in tissues critical for normal craniofacial development.

5.
Artículo en Inglés | MEDLINE | ID: mdl-37830236

RESUMEN

Hearing in infants is essential for brain development, acquisition of verbal language skills, and development of social interactions. Therefore, it is important to diagnose hearing loss soon after birth so that interventions can be provided as early as possible. Most newborns in the United States are screened for hearing deficits and commercially available next-generation sequencing hearing loss panels often can identify the causative gene, which may also identify congenital defects in other organs. One of the most prevalent autosomal dominant congenital hearing loss syndromes is branchio-oto-renal syndrome (BOR), which also presents with defects in craniofacial structures and the kidney. Currently, mutations in three genes, SIX1, SIX5, and EYA1, are known to be causative in about half of the BOR patients that have been tested. To uncover new candidate genes that could be added to congenital hearing loss genetic screens, we have combined the power of Drosophila mutants and protein biochemical assays with the embryological advantages of Xenopus, a key aquatic animal model with a high level of genomic similarity to human, to identify potential Six1 transcriptional targets and interacting proteins that play a role during otic development. We review our transcriptomic, yeast 2-hybrid, and proteomic approaches that have revealed a large number of new candidates. We also discuss how we have begun to identify how Six1 and co-factors interact to direct developmental events necessary for normal otic development.

6.
Front Cell Dev Biol ; 11: 1271178, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37766964

RESUMEN

Introduction: Cranial neural crest (CNC) cells are induced at the border of the neural plate by a combination of FGF, Wnt, and BMP4 signaling. CNC then migrate ventrally and invade ventral structures where they contribute to craniofacial development. Methods: We used loss and gain of function experiments to determine phenotypes associated with the perturbation of Adam11 expression in Xenopus Laevis. Mass spectrometry to identify partners of Adam11 and changes in protein expression in CNC lacking Adam11. We used mouse B16 melanoma to test the function of Adam11 in cancer cells, and published database analysis to study the expression of ADAM11 in human tumors. Results: Here we show that a non-proteolytic ADAM, Adam11, originally identified as a putative tumor suppressor binds to proteins of the Wnt and BMP4 signaling pathway. Mechanistic studies concerning these non-proteolytic ADAM lack almost entirely. We show that Adam11 positively regulates BMP4 signaling while negatively regulating ß-catenin activity. In vivo, we show that Adam11 influences the timing of neural tube closure and the proliferation and migration of CNC. Using both human tumor data and mouse B16 melanoma cells, we further show that ADAM11 levels similarly correlate with Wnt or BMP4 activation levels. Discussion: We propose that ADAM11 preserves naïve cells by maintaining low Sox3 and Snail/Slug levels through stimulation of BMP4 and repression of Wnt signaling, while loss of ADAM11 results in increased Wnt signaling, increased proliferation and early epithelium to mesenchyme transition.

7.
bioRxiv ; 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37398217

RESUMEN

Cranial neural crest (CNC) cells are induced at the border of the neural plate by a combination of FGF, Wnt, and BMP4 signaling. CNC then migrate ventrally and invade ventral structures where they contribute to craniofacial development. Here we show that a non-proteolytic ADAM, Adam11, originally identified as a putative tumor suppressor binds to proteins of the Wnt and BMP4 signaling pathway. Mechanistic studies concerning these non-proteolytic ADAM lack almost entirely. We show that Adam11 positively regulates BMP4 signaling while negatively regulating ß-catenin activity. By modulating these pathways, Adam11 controls the timing of neural tube closure and the proliferation and migration of CNC. Using both human tumor data and mouse B16 melanoma cells, we further show that ADAM11 levels similarly correlate with Wnt or BMP4 activation levels. We propose that ADAM11 preserve naïve cells by maintaining low Sox3 and Snail/Slug levels through stimulation of BMP4 and repression of Wnt signaling, while loss of ADAM11 results in increased Wnt signaling, increased proliferation and early epithelium to mesenchyme transition.

8.
Development ; 150(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36789951

RESUMEN

Monoclonal antibodies are powerful and versatile tools that enable the study of proteins in diverse contexts. They are often utilized to assist with identification of subcellular localization and characterization of the function of target proteins of interest. However, because there can be considerable sequence diversity between orthologous proteins in Xenopus and mammals, antibodies produced against mouse or human proteins often do not recognize Xenopus counterparts. To address this issue, we refined existing mouse monoclonal antibody production protocols to generate antibodies against Xenopus proteins of interest. Here, we describe several approaches for the generation of useful mouse anti-Xenopus antibodies to multiple Xenopus proteins and their validation in various experimental approaches. These novel antibodies are now available to the research community through the Developmental Study Hybridoma Bank (DSHB).


Asunto(s)
Anticuerpos Monoclonales , Proteínas de Xenopus , Animales , Ratones , Hibridomas , Xenopus laevis , Proteínas de Xenopus/genética
9.
Front Immunol ; 13: 985226, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172379

RESUMEN

Background: Given that only 25% of pregnant women elect to receive a COVID-19 vaccine, maternal SARS-CoV-2 infection remains an important route of conferring protective passive immunity to breastfed infants of mothers who are not vaccinated. Methods: We enrolled 30 lactating participants between December 2020 and March 2021 who had a positive PCR-test and their first COVID-19 symptoms within the previous 21 days. Participants were asked to provide serial bilateral milk samples at 12 timepoints (~ every 3 days) over a period of 35 days. A second set of samples was collected at least four months after the beginning of the first set. Participants also were asked to provide their dried blood spots and infant stool samples. All samples were tested for receptor-binding domain (RBD)-specific immunoglobulin (Ig)A, IgG, and IgM. Milk samples were assessed for neutralizing ability against the spike protein and four SARS-CoV-2 variants: D614G, Alpha (B.1.1.7), Beta (B.1.351), and Gamma (P.1). Permeability of the breast epithelium was assessed by measuring the sodium to potassium ions (Na:K) in milk. Using flow cytometry, memory CD4 and CD8 T cells (CD45RO+ and CCR7+/-) and mucosal-homing CD4 and CD8 T cells (CD103+) were determined in cells from milk expressed at 35 days and at least 4 months after their first milk donation. Results: Milk antibodies from SARS-CoV-2 positive participants neutralized the spike complex. Milk from 73, 90, and 53% of participants had binding reactivities to RBD-specific IgA, IgG, and IgM, respectively. In contrast to blood spots, which showed increased levels of IgG, but not IgA or IgM, the COVID-19 response in milk was associated with a robust IgA response. Twenty-seven percent of participants had increased breast-epithelium permeability, as indicated by Na:K ≥ 0.6. The percentage of CD45RO+CCR7- effector-memory T cells in the day ≥120 milk samples was significantly higher than day 35 samples (P< 0.05). Conclusions: Antibodies in milk from participants with recent SARS-CoV-2 infection and those who recovered can neutralize the spike complex. For the first time we show that breastmilk T cells are enriched for mucosal memory T cells, further emphasizing the passive protection against SARS-CoV-2 conferred to infants via breastmilk.


Asunto(s)
COVID-19 , SARS-CoV-2 , Vacunas contra la COVID-19 , Femenino , Humanos , Inmunoglobulina A , Inmunoglobulina G , Inmunoglobulina M , Lactante , Lactancia , Células T de Memoria , Leche Humana , Potasio , Embarazo , Receptores CCR7 , Sodio , Glicoproteína de la Espiga del Coronavirus
10.
Dev Biol ; 489: 62-75, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35697116

RESUMEN

Mcrs1 is a multifunctional protein that is critical for many cellular processes in a wide range of cell types. Previously, we showed that Mcrs1 binds to the Six1 transcription factor and reduces the ability of the Six1-Eya1 complex to upregulate transcription, and that Mcrs1 loss-of-function leads to the expansion of several neural plate genes, reduction of neural border and pre-placodal ectoderm (PPR) genes, and pleiotropic effects on various neural crest (NC) genes. Because the affected embryonic structures give rise to several of the cranial tissues affected in Branchio-otic/Branchio-oto-renal (BOR) syndrome, herein we tested whether these gene expression changes subsequently alter the development of the proximate precursors of BOR affected structures - the otic vesicles (OV) and branchial arches (BA). We found that Mcrs1 is required for the expression of several OV genes involved in inner ear formation, patterning and otic capsule cartilage formation. Mcrs1 knockdown also reduced the expression domains of many genes expressed in the larval BA, derived from either NC or PPR, except for emx2, which was expanded. Reduced Mcrs1 also diminished the length of the expression domain of tbx1 in BA1 and BA2 and interfered with cranial NC migration from the dorsal neural tube; this subsequently resulted in defects in the morphology of lower jaw cartilages derived from BA1 and BA2, including the infrarostral, Meckel's, and ceratohyal as well as the otic capsule. These results demonstrate that Mcrs1 plays an important role in processes that lead to the formation of craniofacial cartilages and its loss results in phenotypes consistent with reduced Six1 activity associated with BOR.


Asunto(s)
Región Branquial , Síndrome Branquio Oto Renal , Región Branquial/metabolismo , Síndrome Branquio Oto Renal/genética , Síndrome Branquio Oto Renal/metabolismo , Cartílago/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Cresta Neural , Placa Neural/metabolismo , Proteínas de Unión al ARN/metabolismo
11.
Obstet Gynecol ; 139(2): 181-191, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35104067

RESUMEN

OBJECTIVE: To evaluate immune responses to coronavirus disease 2019 (COVID-19) mRNA-based vaccines present in breast milk and transfer of the immune responses to breastfeeding infants. METHODS: We enrolled 30 lactating women who received mRNA-based COVID-19 vaccines from January through April 2021 in this cohort study. Women provided serial milk samples, including milk expressed before vaccination, across 2-3 weeks after the first dose, and across 3 weeks after the second dose. Women provided their blood, spotted on cards (dried blood spots), 19 days after the first dose and 21 days after the second dose. Stool samples from the breastfed infants were collected 21 days after mothers' second vaccination. Prepandemic samples of milk, dried blood spots, and infant stool were used as controls. Milk, dried blood spots, and infant stool were tested by enzyme-linked immunosorbent assay for receptor-binding domain (RBD)-specific immunoglobulin (Ig)A and IgG. Milk samples were tested for the presence of neutralizing antibodies against the spike and four variants of concern: D614G, Alpha (B.1.1.7), Beta (B.1.351), and Gamma (P.1). Levels of 10 cytokines were measured in milk samples. RESULTS: Milk from COVID-19-immunized women neutralized the spike and four variants of concern, primarily driven by anti-RBD IgG. The immune response in milk also included significant elevation of interferon-γ. The immune response to maternal vaccination was reflected in breastfed infants: anti-RBD IgG and anti-RBD IgA were detected in 33% and 30% of infant stool samples, respectively. Levels of anti-RBD antibodies in infant stool correlated with maternal vaccine side effects. Median antibody levels against RBD were below the positive cutoffs in prepandemic milk and infant stool samples. CONCLUSION: Humoral and cellular immune responses to mRNA-based COVID-19 vaccination are present in most women's breast milk. The milk anti-RBD antibodies can neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike and variants of concern. Anti-RBD antibodies are transferred to breastfed infants, with the potential to confer passive immunity against SARS-CoV-2.


Asunto(s)
Anticuerpos Neutralizantes/análisis , Lactancia Materna , Vacunas contra la COVID-19/inmunología , Citocinas/análisis , Leche Humana/química , SARS-CoV-2/inmunología , Adulto , Anticuerpos Antivirales/análisis , Estudios de Cohortes , Femenino , Humanos , Inmunoglobulina A/análisis , Inmunoglobulina G/análisis , Lactante , Recién Nacido , Persona de Mediana Edad , Vacunación
12.
Breastfeed Med ; 16(12): 987-994, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34382820

RESUMEN

Objective: To evaluate the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in colostrum from women who tested positive for the virus. Methods: Between March and September 2020 we obtained bilateral colostrum samples collected on spot cards within 48 hours of delivery from 15 new mothers who had previously tested positive for SARS-CoV-2. Four of 15 women provided liquid colostrum, which was used for validating results obtained from spot cards. Archived bilateral colostrum samples collected from 8 women during 2011-2013 were used as pre-coronavirus disease 2019 (COVID-19) controls. All samples were tested for reactivity to the receptor binding domain (RBD) of the SARS-CoV-2 spike protein using an enzyme-linked immunosorbent assay that measures SARS-CoV-2 RBD-specific IgA, IgG, and IgM and for levels of 10 inflammatory cytokines (interferon-gamma [IFN-γ], tumor necrosis factor-alpha, interleukin [IL]-1ß, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-13) using a multiplex electrochemiluminescent sandwich assay. Results: Our validation studies indicate that the levels of SARS-CoV-2-specific antibodies and the associated cytokines measured in liquid colostrum are comparable to levels eluted from spot cards. Bilateral colostrum samples from 73%, 73%, and 33% of the 15 COVID-19 mothers exhibited IgA, IgG, and IgM reactivity to RBD, respectively. In addition, symptomatic COVID-19 mothers had statistically significant elevated levels of 4 of the 10 inflammatory markers (IFN-γ, IL-4, IL-6, and IL-12) compared to asymptomatic COVID-19 mothers. Conclusions: A strong humoral immune response is present in the colostrum of women who were infected with SARS-CoV-2 before delivering. The evolution and duration of the antibody response, as well as dynamics of the cytokine response, remain to be determined. Our results also indicate that future large-scale studies can be conducted with milk easily collected on paper spot cards.


Asunto(s)
COVID-19 , Calostro/inmunología , Inmunidad Celular , Inmunidad Humoral , Complicaciones Infecciosas del Embarazo , Lactancia Materna , COVID-19/inmunología , Femenino , Humanos , Embarazo , Complicaciones Infecciosas del Embarazo/inmunología , Complicaciones Infecciosas del Embarazo/virología , Glicoproteína de la Espiga del Coronavirus
13.
BMJ Open ; 11(8): e051157, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34404716

RESUMEN

OBJECTIVES: To estimate the seroprevalence of anti-SARS-CoV-2 IgG and IgM among Massachusetts residents and to better understand asymptomatic SARS-CoV-2 transmission during the summer of 2020. DESIGN: Mail-based cross-sectional survey. SETTING: Massachusetts, USA. PARTICIPANTS: Primary sampling group: sample of undergraduate students at the University of Massachusetts, Amherst (n=548) and a member of their household (n=231).Secondary sampling group: sample of graduate students, faculty, librarians and staff (n=214) and one member of their household (n=78). All participants were residents of Massachusetts without prior COVID-19 diagnosis. PRIMARY AND SECONDARY OUTCOME MEASURES: Prevalence of SARS-CoV-2 seropositivity. Association of seroprevalence with variables including age, gender, race, geographic region, occupation and symptoms. RESULTS: Approximately 27 000 persons were invited via email to assess eligibility. 1001 households were mailed dried blood spot sample kits, 762 returned blood samples for analysis. In the primary sample group, 36 individuals (4.6%) had IgG antibodies detected for an estimated weighted prevalence in this population of 5.3% (95% CI: 3.5 to 8.0). In the secondary sampling group, 10 participants (3.4%) had IgG antibodies detected for an estimated adjusted prevalence of 4.0% (95% CI: 2.2 to 7.4). No samples were IgM positive. No association was found in either group between seropositivity and self-reported work duties or customer-facing hours. In the primary sampling group, self-reported febrile illness since February 2020, male sex and minority race (Black or American Indian/Alaskan Native) were associated with seropositivity. No factors except geographic regions within the state were associated with evidence of prior SARS-CoV-2 infection in the secondary sampling group. CONCLUSIONS: This study fills a critical gap in estimating the levels of subclinical and asymptomatic infection. Estimates can be used to calibrate models estimating levels of population immunity over time, and these data are critical for informing public health interventions and policy.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Anticuerpos Antivirales , Prueba de COVID-19 , Estudios Transversales , Humanos , Incidencia , Masculino , Servicios Postales , Estudios Seroepidemiológicos
14.
medRxiv ; 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-33758898

RESUMEN

BACKGROUND: The SARS-CoV-2 pandemic is an unprecedented global health crisis. The state of Massachusetts was especially impacted during the initial stages; however, the extent of asymptomatic transmission remains poorly understood due to limited asymptomatic testing in the "first wave." To address this gap, a geographically representative and contact-free seroprevalence survey was conducted in July-August 2020, to estimate prior undetected SARS-CoV-2 infections. METHODS: Students, faculty, librarians and staff members at the University of Massachusetts, Amherst without a previous COVID-19 diagnosis were invited to participate in this study along with one member of their household in June 2020. Two separate sampling frames were generated from administrative lists: all undergraduates and their household members (primary sampling group) were randomly selected with probability proportional to population size. All staff, faculty, graduate students and librarians (secondary sampling group) were selected as a simple random sample. After informed consent and a socio-behavioral survey, participants were mailed test kits and asked to return self-collected dried blood spot (DBS) samples. Samples were analyzed via ELISA for anti-SARS-CoV-2 IgG antibodies, and then IgM antibodies if IgG-positive. Seroprevalence estimates were adjusted for survey non-response. Binomial models were used to assess factors associated with seropositivity in both sample groups separately. RESULTS: Approximately 27,000 persons were invited via email to assess eligibility. Of the 1,001 individuals invited to participate in the study, 762 (76%) returned blood samples for analysis. In the primary sampling group 548 returned samples, of which 230 enrolled a household member. Within the secondary sampling group of 214 individuals, 79 enrolled a household member. In the primary sample group, 36 (4.6%) had IgG antibodies detected for an estimated weighed prevalence for this population of 5.3% (95% CI: 3.5 to 8.0). In the secondary sampling group, 10 (3.4%) of 292 individuals had IgG antibodies detected for an estimated adjusted prevalence of 4.0% (95% CI: 2.2 to 7.4). No samples were IgM positive. No association was found in either sample group between seropositivity and self-reported work duties or customer-facing hours. In the primary sampling group, self-reported febrile illness since Feb 2020, male sex, and minority race (Black or American Indian/Alaskan Native) were associated with seropositivity. No factors except geographic regions within the state were associated with evidence of prior SARS-CoV-2 infection in the secondary sampling group. INTERPRETATION: This study provides insight into the seroprevalence of university-related populations and their household members across the state of Massachusetts during the summer of 2020 of the pandemic and helps to fill a critical gap in estimating the levels of sub-clinical and asymptomatic infection. Estimates like these can be used to calibrate models that estimate levels of population immunity over time to inform public health interventions and policy.

15.
Dev Biol ; 470: 74-83, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33159936

RESUMEN

We previously identified the protein Lbh as necessary for cranial neural crest (CNC) cell migration in Xenopus through the use of morpholinos. However, Lbh is a maternally deposited protein and morpholinos achieve knockdowns through prevention of translation. In order to investigate the role of Lbh in earlier embryonic events, we employed the new technique "Trim-Away" to degrade this maternally deposited protein. Trim-Away utilizes the E3 ubiquitin ligase trim21 to degrade proteins targeted with an antibody and was developed in mammalian systems. Our results show that Xenopus is amenable to the Trim-Away technique. We also show that early knockdown of Lbh in Xenopus results in defects in gastrulation that present with a decrease in fibronectin matrix assembly, an increased in mesodermal cell migration and decrease in endodermal cell cohesion. We further show that the technique is also effective on a second abundant maternal protein PACSIN2. We discuss potential advantages and limit of the technique in Xenopus embryos as well as the mechanism of gastrulation inhibition.


Asunto(s)
Gastrulación , Proteínas de Xenopus/fisiología , Xenopus laevis/embriología , Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Movimiento Celular , Ectodermo/citología , Ectodermo/embriología , Ectodermo/patología , Inducción Embrionaria , Endodermo/citología , Endodermo/embriología , Endodermo/fisiología , Fibronectinas/metabolismo , Mesodermo/citología , Mesodermo/embriología , Mesodermo/fisiología , Morfolinos , Cresta Neural/citología , Cresta Neural/embriología , Proteolisis , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/inmunología , Proteínas de Xenopus/metabolismo
16.
Dev Biol ; 467(1-2): 39-50, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32891623

RESUMEN

The Six1 transcription factor plays a major role in craniofacial development. Mutations in SIX1 and its co-factor, EYA1, are causative for about 50% of Branchio-otic/Branchio-oto-renal syndrome (BOR) patients, who are characterized by variable craniofacial, otic and renal malformations. We previously screened for other proteins that might interact with Six1 to identify additional genes that may play a role in BOR, and herein characterize the developmental role of one of them, Microspherule protein 1 (Mcrs1). We found that in cultured cells, Mcrs1 bound to Six1 and in both cultured cells and embryonic ectoderm reduced Six1-Eya1 transcriptional activation. Knock-down of Mcrs1 in embryos caused an expansion of the domains of neural plate genes and two genes expressed in both the neural plate and neural crest (zic1, zic2). In contrast, two other genes expressed in pre-migratory neural crest (foxd3, sox9) were primarily reduced. Cranial placode genes showed a mixture of expanded and diminished expression domains. At larval stages, loss of Mcrs1 resulted in a significant reduction of otic vesicle gene expression concomitant with a smaller otic vesicle volume. Experimentally increasing Mcrs1 above endogenous levels favored the expansion of neural border and neural crest gene domains over cranial placode genes; it also reduced otic vesicle gene expression but not otic vesicle volume. Co-expression of Mcrs1 and Six1 as well as double knock-down and rescue experiments establish a functional interaction between Mcrs1 and Six1 in the embryo, and demonstrate that this interaction has an important role in the development of craniofacial tissues including the otic vesicle.


Asunto(s)
Embrión no Mamífero/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Proteínas de Unión al ARN/biosíntesis , Cráneo/embriología , Proteínas de Xenopus/biosíntesis , Animales , Ectodermo/embriología , Cresta Neural/embriología , Xenopus laevis
17.
Development ; 147(7)2020 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-32280063

RESUMEN

Matrix metalloproteinases have a broad spectrum of substrates ranging from extracellular matrix components and adhesion molecules to chemokines and growth factors. Despite being mostly secreted, MMPs have been detected in the cytosol, the mitochondria or the nucleus. Although most of the attention is focused on their role in matrix remodeling, the diversity of their substrates and their complex trafficking open the possibility for non-canonical functions. Yet in vivo examples and experimental demonstration of the physiological relevance of such activities are rare. Here, we have used chick neural crest (NC) cells, a highly migratory stem cell population likened to invasive cancer cells, as a model for physiological epithelial-mesenchymal transition (EMT). We demonstrate that MMP14 is required for NC delamination. Interestingly, this role is independent of its cytoplasmic tail and of its catalytic activity. Our in vivo data indicate that, in addition to being a late pro-invasive factor, MMP14 is also likely to be an early player, owing to its role in EMT.


Asunto(s)
Matriz Extracelular/metabolismo , Lamina Tipo A/metabolismo , Metaloproteinasa 14 de la Matriz/fisiología , Cresta Neural/metabolismo , Animales , Animales Modificados Genéticamente , Cadherinas/metabolismo , Catálisis , Células Cultivadas , Embrión de Pollo , Transición Epitelial-Mesenquimal/fisiología
18.
ACS Appl Mater Interfaces ; 11(28): 24971-24983, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31264399

RESUMEN

A novel "symbiotic self-assembly" strategy that integrates the advantages of biocompatible lipids with a structurally robust polymer to efficiently encapsulate and deliver siRNAs is reported. The assembly process is considered to be symbiotic because none of the assembling components are capable of self-assembly but can form well-defined nanostructures in the presence of others. The conditions of the self-assembly process are simple but have been chosen such that it offers the ability to arrive at a system that is noncationic for mitigating carrier-based cytotoxicity, efficiently encapsulate siRNA to minimize cargo loss, be effectively camouflaged to protect the siRNA from nuclease degradation, and efficiently escape the endosome to cause gene knockdown. The lipid-siRNA-polymer (L-siP) nanoassembly formation and its disassembly in the presence of an intracellular trigger have been extensively characterized experimentally and through computational modeling. The complexes have been evaluated for the delivery of four different siRNA molecules in six different cell lines, where an efficient gene knockdown is demonstrated. The reported generalized strategy has the potential to make an impact on the development of a safe and effective delivery agent for RNAi-mediated gene therapy that holds the promise of targeting several hard-to-cure diseases.


Asunto(s)
Portadores de Fármacos , Silenciador del Gen , Terapia Genética , Lípidos , Nanopartículas , Polímeros , ARN Interferente Pequeño , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Endosomas/genética , Endosomas/metabolismo , Células HeLa , Humanos , Lípidos/química , Lípidos/farmacocinética , Lípidos/farmacología , Nanopartículas/química , Nanopartículas/uso terapéutico , Polímeros/química , Polímeros/farmacocinética , Polímeros/farmacología , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacocinética , ARN Interferente Pequeño/farmacología
19.
Development ; 145(7)2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29540504

RESUMEN

During vertebrate gastrulation, canonical Wnt signaling induces the formation of neural plate border (NPB). Wnt is also thought to be required for the subsequent specification of neural crest (NC) lineage at the NPB, but the direct evidence is lacking. We found previously that the disintegrin metalloproteinase ADAM13 is required for Wnt activation and NC induction in Xenopus Here, we report that knockdown of ADAM13 or its close paralog ADAM19 severely downregulates Wnt activity at the NPB, inhibiting NC specification without affecting earlier NPB formation. Surprisingly, ADAM19 functions nonproteolytically in NC specification by interacting with ADAM13 and inhibiting its proteasomal degradation. Ectopic expression of stabilized ADAM13 mutants that function independently of ADAM19 can induce the NC marker/specifier snail2 in the future epidermis via Wnt signaling. These results unveil the essential roles of a novel protease-protease interaction in regulating a distinct wave of Wnt signaling, which directly specifies the NC lineage.


Asunto(s)
Proteínas ADAM/metabolismo , Tipificación del Cuerpo/fisiología , Cresta Neural/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana/metabolismo , Cresta Neural/embriología , Placa Neural/metabolismo , Transducción de Señal , Vía de Señalización Wnt/fisiología , Xenopus/embriología
20.
Genesis ; 56(6-7): e23095, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29476604

RESUMEN

ADAM metalloproteases have been shown to play critical roles during development. In this review, we will describe functional evidence that implicates ADAM proteins during the genesis, migration and differentiation of neural crest cells. We will restrict our analysis to the transmembrane ADAMs as other reviews have addressed the role of extracellular metalloproteases (Christian et al. [2013] Critical Reviews in Biochemistry and Molecular Biology 48:544-560). This review will describe advances that have been obtained mainly through the use of two vertebrate model systems, the frog, and avian embryos. The role of the principal substrates of ADAMs, the cadherins, has been extensively described in other reviews, most recently in (Cousin [1997] Mechanisms of Development 148:79-88; Taneyhill and Schiffmacher [2017] Genesis, 55). The function of ADAMs in the migration of other cell types, including the immune system, wound healing and cancer has been described previously in (Dreymueller et al. [2017] Mediators of Inflammation 2017: 9621724). Our goal is to illustrate both the importance of ADAMs in controlling neural crest behavior and how neural crest cells have helped us understand the molecular interactions, substrates, and functions of ADAM proteins in vivo.


Asunto(s)
Proteínas ADAM/metabolismo , Proteínas ADAM/fisiología , Cresta Neural/embriología , Animales , Diferenciación Celular , Movimiento Celular , Humanos , Proteínas de la Membrana/metabolismo , Cresta Neural/metabolismo , Organogénesis , Transporte de Proteínas , Xenopus/metabolismo , Proteínas de Xenopus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA