Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Pediatr Res ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177248

RESUMEN

BACKGROUND: Given the sparse data on the renin-angiotensin system (RAS) and its biological effector molecules ACE1 and ACE2 in pediatric COVID-19 cases, we investigated whether the ACE1 insertion/deletion (I/D) polymorphism could be a genetic marker for susceptibility to COVID-19 in Egyptian children and adolescents. METHODS: This was a case-control study included four hundred sixty patients diagnosed with COVID-19, and 460 well-matched healthy control children and adolescents. The I/D polymorphism (rs1799752) in the ACE1 gene was genotyped by polymerase chain reaction (PCR), meanwhile the ACE serum concentrations were assessed by ELISA. RESULTS: The ACE1 D/D genotype and Deletion allele were significantly more represented in patients with COVID-19 compared to the control group (55% vs. 28%; OR = 2.4; [95% CI: 1.46-3.95]; for the DD genotype; P = 0.002) and (68% vs. 52.5%; OR: 1.93; [95% CI: 1.49-2.5] for the D allele; P = 0.032). The presence of ACE1 D/D genotype was an independent risk factor for severe COVID-19 among studied patients (adjusted OR: 2.6; [95% CI: 1.6-9.7]; P < 0.001. CONCLUSIONS: The ACE1 insertion/deletion polymorphism may confer susceptibility to SARS-CoV-2 infection in Egyptian children and adolescents. IMPACT: Recent studies suggested a crucial role of renin-angiotensin system and its biological effector molecules ACE1 and ACE2 in the pathogenesis and progression of COVID-19. To our knowledge, ours is the first study to investigate the association of ACE1 I/D polymorphism and susceptibility to COVID-19 in Caucasian children and adolescents. The presence of the ACE1 D/D genotype or ACE1 Deletion allele may confer susceptibility to SARS-CoV-2 infection and being associated with higher ACE serum levels; may constitute independent risk factors for severe COVID-19. The ACE1 I/D genotyping help design further clinical trials reconsidering RAS-pathway antagonists to achieve more efficient targeted therapies.

2.
Pediatr Res ; 93(5): 1383-1390, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36085364

RESUMEN

BACKGROUND: Given the sparse data on vitamin D status in pediatric COVID-19, we investigated whether vitamin D deficiency could be a risk factor for susceptibility to COVID-19 in Egyptian children and adolescents. We also investigated whether vitamin D receptor (VDR) FokI polymorphism could be a genetic marker for COVID-19 susceptibility. METHODS: One hundred and eighty patients diagnosed to have COVID-19 and 200 matched control children and adolescents were recruited. Patients were laboratory confirmed as SARS-CoV-2 positive by real-time RT-PCR. All participants were genotyped for VDR Fok1 polymorphism by RT-PCR. Vitamin D status was defined as sufficient for serum 25(OH) D at least 30 ng/mL, insufficient at 21-29 ng/mL, deficient at <20 ng/mL. RESULTS: Ninety-four patients (52%) had low vitamin D levels with 74 (41%) being deficient and 20 (11%) had vitamin D insufficiency. Vitamin D deficiency was associated with 2.6-fold increased risk for COVID-19 (OR = 2.6; [95% CI 1.96-4.9]; P = 0.002. The FokI FF genotype was significantly more represented in patients compared to control group (OR = 4.05; [95% CI: 1.95-8.55]; P < 0.001). CONCLUSIONS: Vitamin D deficiency and VDR Fok I polymorphism may constitute independent risk factors for susceptibility to COVID-19 in Egyptian children and adolescents. IMPACT: Vitamin D deficiency could be a modifiable risk factor for COVID-19 in children and adolescents because of its immune-modulatory action. To our knowledge, ours is the first such study to investigate the VDR Fok I polymorphism in Caucasian children and adolescents with COVID-19. Vitamin D deficiency and the VDR Fok I polymorphism may constitute independent risk factors for susceptibility to COVID-19 in Egyptian children and adolescents. Clinical trials should be urgently conducted to test for causality and to evaluate the efficacy of vitamin D supplementation for prophylaxis and treatment of COVID-19 taking into account the VDR polymorphisms.


Asunto(s)
COVID-19 , Receptores de Calcitriol , Deficiencia de Vitamina D , Adolescente , Niño , Humanos , COVID-19/genética , Predisposición Genética a la Enfermedad , Genotipo , Receptores de Calcitriol/genética , Factores de Riesgo , SARS-CoV-2 , Vitamina D , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/genética
3.
Front Microbiol ; 13: 922324, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267179

RESUMEN

Cancer and bacterial infection are the most serious problems threatening people's lives worldwide. However, the overuse of antibiotics as antibacterial and anticancer treatments can cause side effects and lead to drug-resistant bacteria. Therefore, developing natural materials with excellent antibacterial and anticancer activity is of great importance. In this study, different concentrations of chitosan (CS), graphene oxide (GO), and graphene oxide-chitosan composite (GO-CS) were tested to inhibit the bacterial growth of gram-positive (Bacillus cereus MG257494.1) and gram-negative (Pseudomonas aeruginosa PAO1). Moreover, we used the most efficient natural antibacterial material as an anticancer treatment. The zeta potential is a vital factor for antibacterial and anticancer mechanism, at pH 3-7, the zeta potential of chitosan was positive while at pH 7-12 were negative, however, the zeta potential for GO was negative at all pH values, which (p < 0.05) increased in the GO-CS composite. Chitosan concentrations (0.2 and 1.5%) exhibited antibacterial activity against BC with inhibition zone diameters of 4 and 12 mm, respectively, and against PAO1 with 2 and 10 mm, respectively. Treating BC and PAO1 with GO:CS (1:2) and GO:CS (1:1) gave a larger (p < 0.05) inhibition zone diameter. The viability and proliferation of HeLa cells treated with chitosan were significantly decreased (p < 0.05) from 95.3% at 0% to 12.93%, 10.33%, and 5.93% at 0.2%, 0.4%, and 0.60% concentrations of chitosan, respectively. Furthermore, CS treatment increased the activity of the P53 protein, which serves as a tumor suppressor. This study suggests that chitosan is effective as an antibacterial and may be useful for cancer treatment.

4.
Antioxidants (Basel) ; 11(5)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35624793

RESUMEN

Foodborne infections and antibiotic resistance pose a serious threat to public health and must be addressed urgently. Pistacia lentiscus is a wild-growing shrub and has been utilized for medicinal applications as well as for culinary purposes. The antibacterial and antioxidant activities of P. lentiscus bark in vitro, as well as the phytochemical composition, are the focus of this inquiry. The bark extract of P. lentiscus showed significant antimicrobial activity in experiments on bacteria and yeast isolated from human and food sources. The exposure time for the complete inhibition of cell viability of P. aeruginosa in the extracts was found to be 5% at 15 min. Phytochemical inquiry of the methanol extract demonstrates the existence of carbohydrates, flavonoids, tannins, coumarins, triterpenes, and alkaloids. Deep phytochemical exploration led to the identification of methyl gallate, gallic acid, kaempferol, quercetin, kaempferol 3-O-α-rhamnoside, kaempferol 3-O-ß-glucoside, and Quercetin-3-O-ß-glucoside. When tested using the DPPH assay, the methanol extracts of P. lentiscus bark demonstrated a high free radical scavenging efficiency. Further, we have performed a molecular modelling study which revealed that the extract of P. lentiscus bark could be a beneficial source for novel flavonoid glycosides inhibitors against SARS-CoV-2 infection. Taken together, this study highlights the Pistacia lentiscus bark methanol extract as a promising antimicrobial and antiviral agent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA