Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Oleo Sci ; 72(3): 337-346, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36878587

RESUMEN

A photolysis method was used to prepare a nanocomposite adsorbent (Chitosan-TiO2) and was tested for Cr(VI) removal from aqueous solution. The produce nanocomposite was investigated using, XRD, BET, FTIR, FESEM-EDX and TEM before and after Cr(VI) adsorption. The XRD results shows prepared anatase phase of TiO2 with 12 nm. According to BET measurements, the surface area of the TiO2/chitosan nanocomposite was lower and archived to 26 m2/g, while the TEM and FESEM images show a uniform distribution of TiO2 throughout the chitosan matrix. Adsorption and kinetic experiments were run in batch system under different conditions of pH, contact time, adsorbent dosage and temperature. Experimental Cr(VI) adsorption equilibrium and kinetics data fitted well to Langmuir model. The calculated Langmuir maximum adsorption capacity (qmax) value of nanocomposite was 488 mg/g. Moreover, the highest quantity of Cr(VI) uptake was achieved of pH = 2 and 45℃ and TiO2 and CS-TiO2 had respective removal efficiencies of 94 and 87.5%. The thermodynamic parameters of Cr(VI) adsorption by nanocomposite affirm the spontaneous and endothermic nature of process. Chromium adsorption mechanism by CS-TiO2 nanocomposite were proposed and discussed.


Asunto(s)
Quitosano , Nanocompuestos , Aguas Residuales , Cinética , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA