Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Cells ; 13(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38920652

RESUMEN

Mesenchymal stem cells (MSCs) of placental origin hold great promise in tissue engineering and regenerative medicine for diseases affecting cartilage and bone. However, their utility has been limited by their tendency to undergo premature senescence and phenotypic drift into adipocytes. This study aimed to explore the potential involvement of a specific subset of aging and antiaging genes by measuring their expression prior to and following in vitro-induced differentiation of placental MSCs into chondrocytes and osteoblasts as opposed to adipocytes. The targeted genes of interest included the various LMNA/C transcript variants (lamin A, lamin C, and lamin A∆10), sirtuin 7 (SIRT7), and SM22α, along with the classic aging markers plasminogen activator inhibitor 1 (PAI-1), p53, and p16INK4a. MSCs were isolated from the decidua basalis of human term placentas, expanded, and then analyzed for phenotypic properties by flow cytometry and evaluated for colony-forming efficiency. The cells were then induced to differentiate in vitro into chondrocytes, osteocytes, and adipocytes following established protocols. The mRNA expression of the targeted genes was measured by RT-qPCR in the undifferentiated cells and those fully differentiated into the three cellular lineages. Compared to undifferentiated cells, the differentiated chondrocytes demonstrated decreased expression of SIRT7, along with decreased PAI-1, lamin A, and SM22α expression, but the expression of p16INK4a and p53 increased, suggesting their tendency to undergo premature senescence. Interestingly, the cells maintained the expression of lamin C, which indicates that it is the primary lamin variant influencing the mechanoelastic properties of the differentiated cells. Notably, the expression of all targeted genes did not differ from the undifferentiated cells following osteogenic differentiation. On the other hand, the differentiation of the cells into adipocytes was associated with decreased expression of lamin A and PAI-1. The distinct patterns of expression of aging and antiaging genes following in vitro-induced differentiation of MSCs into chondrocytes, osteocytes, and adipocytes potentially reflect specific roles for these genes during and following differentiation in the fully functional cells. Understanding these roles and the network of signaling molecules involved can open opportunities to improve the handling and utility of MSCs as cellular precursors for the treatment of cartilage and bone diseases.


Asunto(s)
Diferenciación Celular , Condrogénesis , Células Madre Mesenquimatosas , Osteogénesis , Placenta , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Femenino , Placenta/metabolismo , Placenta/citología , Diferenciación Celular/genética , Condrogénesis/genética , Embarazo , Osteogénesis/genética , Biomarcadores/metabolismo , Senescencia Celular/genética , Condrocitos/metabolismo , Condrocitos/citología , Envejecimiento , Lamina Tipo A/metabolismo , Lamina Tipo A/genética
2.
J Clin Med ; 13(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731097

RESUMEN

Background: Recent research has identified alternative transcript variants of LMNA/C (LMNA, LMNC, LMNAΔ10, and LMNAΔ50) and insulin receptors (INSRs) as potential biomarkers for various types of cancer. The objective of this study was to assess the expression of LMNA/C and INSR transcript variants in peripheral blood mononuclear cells (PBMCs) of leukemia patients to investigate their potential as diagnostic biomarkers. Methods: Quantitative TaqMan reverse transcriptase polymerase chain reaction (RT-qPCR) was utilized to quantify the mRNA levels of LMNA/C (LMNA, LMNC, LMNAΔ10, and LMNAΔ50) as well as INSR (IR-A and IR-B) variants in PBMCs obtained from healthy individuals (n = 32) and patients diagnosed with primary leukemias (acute myeloid leukemia (AML): n = 17; acute lymphoblastic leukemia (ALL): n = 8; chronic myeloid leukemia (CML): n = 5; and chronic lymphocytic leukemia (CLL): n = 15). Results: Only LMNA and LMNC transcripts were notably present in PBMCs. Both exhibited significantly decreased expression levels in leukemia patients compared to the healthy control group. Particularly, the LMNC:LMNA ratio was notably higher in AML patients. Interestingly, IR-B expression was not detectable in any of the PBMC samples, precluding the calculation of the IR-A:IR-B ratio as a diagnostic marker. Despite reduced expression across all types of leukemia, IR-A levels remained detectable, indicating its potential involvement in disease progression. Conclusions: This study highlights the distinct expression patterns of LMNA/C and INSR transcript variants in PBMCs of leukemia patients. The LMNC:LMNA ratio shows promise as a potential diagnostic indicator for AML, while further research is necessary to understand the role of IR-A in leukemia pathogenesis and its potential as a therapeutic target.

3.
Ann Thorac Med ; 19(2): 165-171, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38766371

RESUMEN

BACKGROUND: Despite the decline of the COVID-19 pandemic, there continues to be a persistent requirement for reliable testing methods that can be adapted to future outbreaks and areas with limited resources. While the standard approach of using reverse transcription-polymerase chain reaction (RT-PCR) with Taq polymerase is effective, it faces challenges such as limited access to high-quality enzymes and the presence of bacterial DNA contamination in commercial kits, which can impact the accuracy of test results. METHODS: This study investigates the production of recombinant Taq polymerase in yeast cells and assesses its crude lysate in a multiplex RT-PCR assay for detecting the SARS-CoV-2 RNA-dependent RNA polymerase (RdRP) and N genes, with human Ribonuclease P serving as an internal control. RESULTS: The unpurified yeast Taq polymerase demonstrates sensitivity comparable to commercially purified bacterial Taq polymerase and unpurified bacterial counterparts in detecting the RdRP and N genes. It exhibits the highest specificity, with 100% accuracy, for the N gene. The specificity for the RdRP gene closely aligns with that of commercially purified bacterial Taq polymerase and unpurified bacterial Taq polymerase. CONCLUSIONS: The use of unpurified recombinant yeast Taq polymerase shows promise as a cost-effective approach for conducting in-house COVID-19 RT-PCR testing. By eliminating the need for chromatography purification steps, the production of RT-PCR kits can be streamlined, potentially improving accessibility and scalability, especially in resource-limited settings and future pandemics.

4.
Int J Mol Sci ; 25(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38791499

RESUMEN

The activation of caspases is a crucial event and an indicator of programmed cell death, also known as apoptosis. These enzymes play a central role in cancer biology and are considered one promising target for current and future advancements in therapeutic interventions. Traditional methods of measuring caspase activity such as antibody-based methods provide fundamental insights into their biological functions, and are considered essential tools in the fields of cell and cancer biology, pharmacology and toxicology, and drug discovery. However, traditional methods, though extensively used, are now recognized as having various shortcomings. In addition, these methods fall short of providing solutions to and matching the needs of the rapid and expansive progress achieved in studying caspases. For these reasons, there has been a continuous improvement in detection methods for caspases and the network of pathways involved in their activation and downstream signaling. Over the past decade, newer methods based on cutting-edge state-of-the-art technologies have been introduced to the biomedical community. These methods enable both the temporal and spatial monitoring of the activity of caspases and their downstream substrates, and with enhanced accuracy and precision. These include fluorescent-labeled inhibitors (FLIs) for live imaging, single-cell live imaging, fluorescence resonance energy transfer (FRET) sensors, and activatable multifunctional probes for in vivo imaging. Recently, the recruitment of mass spectrometry (MS) techniques in the investigation of these enzymes expanded the repertoire of tools available for the identification and quantification of caspase substrates, cleavage products, and post-translational modifications in addition to unveiling the complex regulatory networks implicated. Collectively, these methods are enabling researchers to unravel much of the complex cellular processes involved in apoptosis, and are helping generate a clearer and comprehensive understanding of caspase-mediated proteolysis during apoptosis. Herein, we provide a comprehensive review of various assays and detection methods as they have evolved over the years, so to encourage further exploration of these enzymes, which should have direct implications for the advancement of therapeutics for cancer and other diseases.


Asunto(s)
Caspasas , Caspasas/metabolismo , Humanos , Animales , Apoptosis , Transferencia Resonante de Energía de Fluorescencia/métodos , Neoplasias/diagnóstico , Neoplasias/metabolismo , Inhibidores de Caspasas/farmacología , Colorantes Fluorescentes/química
5.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38612893

RESUMEN

Cancer continues to pose a significant global health challenge, as evidenced by the increasing incidence rates and high mortality rates, despite the advancements made in chemotherapy. The emergence of chemoresistance further complicates the effectiveness of treatment. However, there is growing interest in the potential of metformin, a commonly prescribed drug for type 2 diabetes mellitus (T2DM), as an adjuvant chemotherapy agent in cancer treatment. Although the precise mechanism of action of metformin in cancer therapy is not fully understood, it has been found to have pleiotropic effects, including the modulation of metabolic pathways, reduction in inflammation, and the regulation of cellular proliferation. This comprehensive review examines the anticancer properties of metformin, drawing insights from various studies conducted in vitro and in vivo, as well as from clinical trials and observational research. This review discusses the mechanisms of action involving both insulin-dependent and independent pathways, shedding light on the potential of metformin as a therapeutic agent for different types of cancer. Despite promising findings, there are challenges that need to be addressed, such as conflicting outcomes in clinical trials, considerations regarding dosing, and the development of resistance. These challenges highlight the importance of further research to fully harness the therapeutic potential of metformin in cancer treatment. The aims of this review are to provide a contemporary understanding of the role of metformin in cancer therapy and identify areas for future exploration in the pursuit of effective anticancer strategies.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Neoplasias , Humanos , Metformina/farmacología , Metformina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Proliferación Celular , Quimioterapia Adyuvante , Hiperplasia , Neoplasias/tratamiento farmacológico
6.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38139843

RESUMEN

Metformin is the first-line oral medication for treating type 2 diabetes mellitus (T2DM). In the current study, an untargeted lipidomic analytical approach was used to investigate the alterations in the serum lipidome of a cohort of 89 participants, including healthy lean controls and obese diabetic patients, and to examine the alterations associated with metformin administration. A total of 115 lipid molecules were significantly dysregulated (64 up-regulated and 51 down-regulated) in the obese compared to lean controls. However, the levels of 224 lipid molecules were significantly dysregulated (125 up-regulated and 99 down-regulated) in obese diabetic patients compared to the obese group. Metformin administration in obese diabetic patients was associated with significant dysregulation of 54 lipid molecule levels (20 up-regulated and 34 down-regulated). Levels of six molecules belonging to five lipid subclasses were simultaneously dysregulated by the effects of obesity, T2DM, and metformin. These include two putatively annotated triacylglycerols (TGs), one plasmenyl phosphatidylcholine (PC), one phosphatidylglycerol (PGs), one sterol lipid (ST), and one Mannosyl-phosphoinositol ceramide (MIPC). This study provides new insights into our understanding of the lipidomics alterations associated with obesity, T2DM, and metformin and offers a new platform for potential biomarkers for the progression of diabetes and treatment response in obese patients.

7.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37895816

RESUMEN

Background: Obesity and type 2 diabetes mellitus (T2DM) are characterized by underlying low-grade chronic inflammation. Metformin has been used as the first line of therapy in T2DM as it decreases hepatic glucose production and glucose intestinal absorption, enhances insulin sensitivity and weight loss, and is known to ameliorate inflammation. The mechanisms through which metformin exerts its effect remain unclear. Proteomics has emerged as a unique approach to explore the biological changes associated with diseases, including T2DM. It provides insight into the circulating biomarkers/mediators which could be utilized for disease screening, diagnosis, and prognosis. Methods: This study evaluated the proteomic changes in obese (Ob), obese diabetics (OD), and obese diabetic patients on metformin (ODM) using a 2D DIGE MALDI-TOF mass spectrometric approach. Results: Significant changes in sixteen plasma proteins (15 up and 1 down, ANOVA, p ≤ 0.05; fold change ≥ 1.5) were observed in the ODM group when compared to the Ob and OD groups. Bioinformatic network pathway analysis revealed that the majority of these altered plasma proteins are involved in distinct pathways involving acute-phase response, inflammation, and oxidative response and were centered around HNF4A, ERK, JNK, and insulin signaling pathways. Conclusions: Our study provides important information about the possible biomarkers altered by metformin treatment in obese patients with and without T2DM. These altered plasma proteins are involved in distinct pathways involving acute-phase response, inflammation, and oxidative response and were centered around HNF4A, ERK, JNK, and insulin signaling pathways. The presented proteomic profiling approach may help in identifying potential biomarkers/mediators affected by metformin treatment in T2DM and inform the understanding of metformin's mechanisms of action.

8.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37834454

RESUMEN

This comprehensive review thoroughly explores the intricate involvement of insulin receptor (IR) isoforms and insulin-like growth factor receptors (IGFRs) in the context of the insulin and insulin-like growth factor (IGF) signaling (IIS) pathway. This elaborate system encompasses ligands, receptors, and binding proteins, giving rise to a wide array of functions, including aspects such as carcinogenesis and chemoresistance. Detailed genetic analysis of IR and IGFR structures highlights their distinct isoforms, which arise from alternative splicing and exhibit diverse affinities for ligands. Notably, the overexpression of the IR-A isoform is linked to cancer stemness, tumor development, and resistance to targeted therapies. Similarly, elevated IGFR expression accelerates tumor progression and fosters chemoresistance. The review underscores the intricate interplay between IRs and IGFRs, contributing to resistance against anti-IGFR drugs. Consequently, the dual targeting of both receptors could present a more effective strategy for surmounting chemoresistance. To conclude, this review brings to light the pivotal roles played by IRs and IGFRs in cellular signaling, carcinogenesis, and therapy resistance. By precisely modulating these receptors and their complex signaling pathways, the potential emerges for developing enhanced anti-cancer interventions, ultimately leading to improved patient outcomes.


Asunto(s)
Neoplasias , Somatomedinas , Humanos , Insulina/metabolismo , Receptor de Insulina/metabolismo , Resistencia a Antineoplásicos/genética , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Transducción de Señal , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Insulina Regular Humana , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Carcinogénesis/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo
9.
Front Biosci (Landmark Ed) ; 28(6): 113, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37395027

RESUMEN

BACKGROUND: Lamins are the major component of nuclear lamina. Alternative splicing of the 12 exons comprising lamin A/C gene creates five known transcript variants, lamin A, lamin C, lamin AΔ10, lamin AΔ50, and lamin C2. The main objective for this study was to examine the association of critical pathways, networks, molecular and cellular functions regulated by each Lamin A/C transcript variants. METHODS: Ion AmpliSeq Transcriptome Human Gene Expression analysis was performed on MCF7 cells stably transfected with lamin A/C transcript variants. RESULTS: Lamin A or lamin AΔ50 upregulation was associated with activation of cell death and inactivation of carcinogenesis while both lamin C or lamin AΔ10 upregulation activated carcinogenesis and cell death. CONCLUSIONS: Data suggest anti-apoptotic and anti-senescence effects of lamin C and lamin AΔ10 as several functions, including apoptosis and necrosis functions are inactivated following lamin C or lamin AΔ10 upregulation. However, lamin AΔ10 upregulation is associated with a more carcinogenic and aggressive tumor phenotype. Lamin A or lamin AΔ50 upregulation is associated with a predicted activation of increased cell death and inactivation of carcinogenesis. Thus, different signaling pathways, networks, molecular and cellular functions are activated/inactivated by lamin A/C transcript variants resulting in a large number of laminopathies.


Asunto(s)
Lamina Tipo A , Transcriptoma , Humanos , Empalme Alternativo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Células MCF-7 , Transducción de Señal/genética
10.
Medicina (Kaunas) ; 58(12)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36557031

RESUMEN

Background and Objectives: Visceral obesity is associated with chronic low-grade inflammation that predisposes to metabolic syndrome. Indeed, infiltration of adipose tissue with immune-inflammatory cells, including 'classical' inflammatory M1 and anti-inflammatory 'alternative' M2 macrophages, causes the release of a variety of bioactive molecules, resulting in the metabolic complications of obesity. This study examined the relative expression of macrophage phenotypic surface markers, cholesterol efflux proteins, scavenger receptors, and adenosine receptors in human circulating peripheral blood mononuclear cells (PBMCs), isolated from patients with type 2 diabetes mellitus (T2DM), with the aim to phenotypically characterize and identify biomarkers for these ill-defined cells. Materials and Methodology: PBMCs were isolated from four groups of adults: Normal-weight non-diabetic, obese non-diabetic, newly diagnosed with T2DM, and T2DM on metformin. The mRNA expression levels of macrophage phenotypic surface markers (interleukin-12 (IL-12), C-X-C motif chemokine ligand 10 (CXCL10), C-C motif chemokine ligand 17 (CCL17), and C-C motif receptor 7 (CCR7)), cholesterol efflux proteins (ATP-binding cassette transporter-1 (ABCA1), ATP binding cassette subfamily G member 1 (ABCG1), and sterol 27-hydroxylase (CYP27A)), scavenger receptors (scavenger receptor-A (SR-A), C-X-C motif ligand 16 (CXCL16), and lectin-like oxidized LDL receptor-1 (LOX-1)), and adenosine receptors (adenosine A2A receptor (A2AR) and adenosine A3 receptor (A3R)) were measured using qRT-PCR. Results: In PBMCs from T2DM patients, the expression of IL-12, CCR7, ABCA1, and SR-A1 was increased, whereas the expression of CXCL10, CCL17, ABCG1,27-hydroxylase, LOX-1, A2AR and A3R was decreased. On the other hand, treatment with the antidiabetic drug, metformin, reduced the expression of IL-12 and increased the expression of 27-hydroxylase, LOX-1, CXCL16 and A2AR. Conclusions: PBMCs in the circulation of patients with T2DM express phenotypic markers that are different from those typically present in adipose tissue M1 and M2 macrophages and could be representative of metabolically activated macrophages (MMe)-like cells. Our findings suggest that metformin alters phenotypic markers of MMe-like cells in circulation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Adulto , Humanos , Transportador 1 de Casete de Unión a ATP/genética , Colesterol , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Perfilación de la Expresión Génica , Interleucina-12 , Leucocitos Mononucleares , Ligandos , Metformina/metabolismo , Obesidad/metabolismo , Receptores CCR7/genética , Receptores CCR7/metabolismo , Receptores Depuradores de Clase B/genética , Receptores Depuradores de Clase B/metabolismo , Receptores Depuradores de Clase E
11.
Curr Issues Mol Biol ; 44(12): 6117-6131, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36547078

RESUMEN

The COVID-19 pandemic necessitated an extensive testing for active SARS-CoV-2 infection. However, securing affordable diagnostic tests is a struggle for low-resource settings. We report herein the development and validation of an in-house multiplex real-time RT-PCR diagnostic test for the detection of active COVID-19 infection (ScriptTaq COVID PCR). Furthermore, we describe two methods for RNA extraction using either an in-house silica column or silica-coated magnetic beads to replace commercial RNA extraction kits. Different buffer formulations for silica column and silica-coated magnetic beads were tested and used for RNA isolation. Taq polymerase enzyme and thermostable reverse transcriptase enzyme were purified from bacterial clones. Primers/probes sequences published by the WHO and CDC were used for the qualitative detection of the RNA-dependent RNA polymerase (RdRp) and nucleocapsid (N) genes, respectively. ScriptTaq COVID PCR assay was able to detect up to 100 copies per reaction of the viral RdRP and N genes. The test demonstrated an overall agreement of 95.4%, a positive percent agreement (PPA) of 90.2%, and a negative percent agreement (NPA) of 100.0% when compared with two commercially available kits. ScriptTaq COVID PCR diagnostic test is a specific, sensitive, and low-cost alternative for low-resource settings.

12.
Drug Metab Pers Ther ; 37(4): 353-359, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36476275

RESUMEN

OBJECTIVES: Despite its wide usage, warfarin therapy remains challenging due to its narrow therapeutic index, inter-individual response variability, and risk of bleeding. Previous reports have suggested that polymorphisms in VKORC1 and CYP2C9 genes could influence warfarin therapy. Herein, we investigated whether VKORC1 -1173C>T, CYP2C9*2, and CYP2C9*3 gene polymorphisms are associated with warfarin dose adjustment and related bleeding events. METHODS: This cross-sectional study was conducted on Saudi adults receiving warfarin for more than 1 month. Their demographics and relevant clinical data were obtained. Genotyping for VKORC1 -1173C>T, CYP2C9*2, and CYP2C9*2 genotypes was performed. RESULTS: Patients who are homozygous for the mutant T allele VKORC1 T/T required the lowest warfarin daily maintenance dose, compared to VKORC1 C/T and VKORC1 C/C. Similarly, there was a significant reduction in warfarin daily maintenance dose among CYP2C9*1/*3 and CYP2C9*1/*2 groups compared to CYP2C9*1/*1. However, we found no significant correlation between the studied polymorphisms and warfarin-associated bleeding. CONCLUSIONS: Similar to other populations, the VKORC1 and CYP2C9 gene polymorphisms are significantly associated with warfarin dosage in Saudi patients. The presence of at least one copy of the mutant alleles for VKORC1 -1173C>T, CYP2C9*2, and CYP2C9*3 is associated with a significant reduction in warfarin maintenance dose.


Asunto(s)
Polimorfismo de Nucleótido Simple , Warfarina , Humanos , Warfarina/efectos adversos , Polimorfismo de Nucleótido Simple/genética , Estudios Transversales , Citocromo P-450 CYP2C9/genética , Vitamina K Epóxido Reductasas/genética
13.
Drug Metab Pers Ther ; 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35365981

RESUMEN

OBJECTIVES: Despite its wide usage, warfarin therapy remains challenging due to its narrow therapeutic index, inter-individual response variability, and risk of bleeding. Previous reports have suggested that polymorphisms in VKORC1 and CYP2C9 genes could influence warfarin therapy. Herein, we investigated whether VKORC1 -1173C>T, CYP2C9*2, and CYP2C9*3 gene polymorphisms are associated with warfarin dose adjustment and related bleeding events. METHODS: This cross-sectional study was conducted on Saudi adults receiving warfarin for more than 1 month. Their demographics and relevant clinical data were obtained. Genotyping for VKORC1 -1173C>T, CYP2C9*2, and CYP2C9*2 genotypes was performed. RESULTS: Patients who are homozygous for the mutant T allele VKORC1 T/T required the lowest warfarin daily maintenance dose, compared to VKORC1 C/T and VKORC1 C/C. Similarly, there was a significant reduction in warfarin daily maintenance dose among CYP2C9*1/*3 and CYP2C9*1/*2 groups compared to CYP2C9*1/*1. However, we found no significant correlation between the studied polymorphisms and warfarin-associated bleeding. CONCLUSIONS: Similar to other populations, the VKORC1 and CYP2C9 gene polymorphisms are significantly associated with warfarin dosage in Saudi patients. The presence of at least one copy of the mutant alleles for VKORC1 -1173C>T, CYP2C9*2, and CYP2C9*3 is associated with a significant reduction in warfarin maintenance dose.

14.
Anal Chim Acta ; 1184: 339009, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34625254

RESUMEN

BACKGROUND: The identification of unique senescence markers remains challenging. Current hallmarks of senescent cells, including increased senescence-associated ß-galactosidase activity, increased levels of cell cycle regulators such as p16INK4a, p27, and p53, and altered levels of sirtuins and lamins, are detected commonly by Western blot and immunohistochemistry methods. Mass spectrometry outperforms these conventional quantification methods in terms of high throughput, specificity, and reproducibility. OBJECTIVES: To develop multiple reaction monitoring-based tandem mass spectrometric senescence assay for simultaneous measuring of p16INK4a, p27, p53, p53-ß, the seven proteins of the sirtuins family and the four transcript variants of lamins proteins in aging cell model and cancerous cell lines. METHODOLOGY: Multiple reaction monitoring-tandem mass transitions per protein were developed for each signature peptide(s) and stable isotope-labeled internal standard. The developed assay was validated in a matrix using breast cancer MCF7 cell lines according to the US-FDA guidelines for bioanalytical assays. RESULTS: The analytes chromatographic peaks were baseline separated and showed linear behavior in a wide dynamic range with r2 ≥ 0.98. The method for all proteins has passed the inter/intra-day precision and accuracy validation using three levels of quality control samples. The accuracy and the precision for most analytes were 80-120% and ≤20%, respectively. The method's sensitivity for the panels' signature peptides ranged from 1 ng µL-1 to 1 µg mL-1. Extraction recovery assessed in two quality control levels was >60% for most analytes. This LC-MS-MS validated senescence assay showed reduced lamin A, lamin A△10, lamin A△50, SIRT1, SIRT3, SIRT5, p53, and p16INK4a, as well as p53-ß induction, are implicated in replicative senescence. Meanwhile, increased lamin C: lamin A ratio was evident and can diagnose breast carcinogenesis. Moreover, in breast cancer metastasis, reduced SIRT2 and p27 and elevated levels of lamin A△50, SIRT5, SIRT7, and p53-ß are evident. CONCLUSION: LC-MS/MS is a potent alternative tool to the currently available assays. The high throughput method established can study senescence's role in different pathophysiological processes.


Asunto(s)
Espectrometría de Masas en Tándem , Cromatografía Liquida , Humanos , Células MCF-7 , Reproducibilidad de los Resultados
15.
Malar J ; 20(1): 376, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34551786

RESUMEN

BACKGROUND: The FcγRs genotypes have been reported to play a key role in the defence against malaria parasites through both cellular and humoral immunity. This study aimed to investigate the possible correlation between FcγR (IIa, IIIa, and IIIb) genes polymorphism and the clinical outcome for anti-malarial antibody response of Plasmodium falciparum infection among Saudi children. METHODS: A total of 600 volunteers were enrolled in this study, including 200 malaria-free control (MFC) subjects, 218 patients with uncomplicated malaria (UM) and 182 patients with severe malaria (SM). The FcγR genotypes were analysed using PCR amplification methods, and measurements of immunoglobulin were determined using enzyme-linked immunosorbent assay (ELISA) technique. RESULTS: The data revealed that the FcγRIIa-R/R131 showed a statistically significant association with SM patients when compared to UM patients. Furthermore, higher levels of IgG1, IgG2, and IgG4 were associated with the FcγRIIa-H/H131 genotype among UM patients. Although the FcγRIIa-F/V176 genotype was not associated with UM, it showed a significant association with severe malaria. Interestingly, the FcγRIIIa-V/V176 genotype offered protection against SM. Moreover, SM patients carrying the FcγRIIIa-F/F genotype showed higher levels of AMA-1-specific IgG2 and IgG4 antibodies. The FcγRIIIb-NA1/NA1 and FcγRIIIb-NA2/NA2 genotypes did not show significant differences between the UM and the MFC groups. However, the genotype FcγRIIIb-NA2/NA2 was statistically significantly associated with SM patients. CONCLUSIONS: The data presented in this study suggest that the influence of the FcγRIIa-R/R131, FcγRIIIa-F/F176 and FcγRIIIb-NA2/NA2 genotypes are statistically significantly associated with SM patients. However, the FcγRIIa-H/H13 and FcγRIIIa-V/V176 genotypes have demonstrated a protective effect against SM when compared to UM patients. The impact of the FcyR (IIa, IIIa and IIIb) gene variants and anti-malaria IgG subclasses play an important role in susceptibility to malaria infection and disease outcome in Saudi children.


Asunto(s)
Malaria Falciparum/genética , Polimorfismo Genético , Receptores de IgG/genética , Niño , Femenino , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Humanos , Inmunoglobulina G , Masculino , Receptores de IgG/metabolismo , Arabia Saudita
16.
Bioanalysis ; 13(5): 373-386, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33661702

RESUMEN

Background: The acetate ion has important physiological functions and important therapeutic applications. A rapid LC-MS/MS method is described to measure acetate ions in human plasma without chemical derivatization. Materials & methods: A 200 µl sample was spiked with the internal standard 1,2-13C-acetate and proteins precipitated with trichloroacetic acid. The supernatant was recovered and separated under acidic conditions on a C18-column. The eluent was alkalinized by post-column infusion of methanolic ammonium hydroxide. Acetate ions were monitored on a low resolution mass spectrometer in negative ion mode. Results: Method was validated for accuracy and precision with a lower limit of quantitation of 9.7 µM and linear dynamic range up to 339.6 µM. Conclusion: The method is open for analytical improvement and adapts with metabolomic and pharmacometabolomic studies on chemicals of similar nature.


Asunto(s)
Acetatos/sangre , Bioensayo , Cromatografía Liquida , Humanos , Espectrometría de Masas en Tándem
17.
J Diabetes Complications ; 35(1): 107758, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33187870

RESUMEN

BACKGROUND: Although there is increasing evidence showing that cell senescence is increased in circulating PBMC in type 2 diabetes mellitus (T2DM), the data are contradictory. This study examined several senescence biomarkers, including LMNA/C transcript variants, p16INK4a, p53, and p21Cip1/WAF, in PBMC of T2DM patients and the effect of Metformin on these senescence markers. METHODS: Blood samples were obtained from 30 lean, 30 obese, 20 newly diagnosed type 2 diabetes mellitus (T2DM), and 30 T2DM on Metformin. PBMC were isolated and mRNA expression of the senescence biomarkers were quantified by RT-qPCR. The effect of ectopic expression of LMNA and LMNC in human monocytic cells lines (THP-1 and U937) on several inflammatory mediators were also examined. RESULTS: LMNA expression was significantly higher in PBMC of obese and T2DM patients. LMNC expression was significantly inhibited in T2DM patients. LMNAΔ10 and Progerin mRNA expression was not detected in PBMC of all groups. Expression of p16INK4a, p21Cip1/WAF and p53 were inhibited significantly in T2DM. Metformin treatment reverted LMNA, LMNC, and p53 expression levels to normal levels. Upregulation of LMNA in monocytic THP-1 and U937 cell lines induced CD68, TNFα, CCL2, IL-6 and NOS2. CONCLUSIONS: These data support the notion that LMNA may mediate senescence in PBMCs of T2DM by upregulating inflammatory pathways. Metformin may exert its anti-inflammatory property by modulation of senescence mediator LMNA.


Asunto(s)
Diabetes Mellitus Tipo 2 , Biomarcadores , Senescencia Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Expresión Génica , Humanos , Leucocitos Mononucleares , Metformina/farmacología , Metformina/uso terapéutico , Obesidad , ARN Mensajero , Proteína p53 Supresora de Tumor/genética , Células U937
18.
Front Mol Biosci ; 7: 609806, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33381523

RESUMEN

Obesity is associated with an increased risk of insulin resistance (IR) and type 2 diabetes mellitus (T2DM) which is a multi-factorial disease associated with a dysregulated metabolism and can be prevented in pre-diabetic individuals with impaired glucose tolerance. A metabolomic approach emphasizing metabolic pathways is critical to our understanding of this heterogeneous disease. This study aimed to characterize the serum metabolomic fingerprint and multi-metabolite signatures associated with IR and T2DM. Here, we have used untargeted high-performance chemical isotope labeling (CIL) liquid chromatography-mass spectrometry (LC-MS) to identify candidate biomarkers of IR and T2DM in sera from 30 adults of normal weight, 26 obese adults, and 16 adults newly diagnosed with T2DM. Among the 3633 peak pairs detected, 62% were either identified or matched. A group of 78 metabolites were up-regulated and 111 metabolites were down-regulated comparing obese to lean group while 459 metabolites were up-regulated and 166 metabolites were down-regulated comparing T2DM to obese groups. Several metabolites were identified as IR potential biomarkers, including amino acids (Asn, Gln, and His), methionine (Met) sulfoxide, 2-methyl-3-hydroxy-5-formylpyridine-4-carboxylate, serotonin, L-2-amino-3-oxobutanoic acid, and 4,6-dihydroxyquinoline. T2DM was associated with dysregulation of 42 metabolites, including amino acids, amino acids metabolites, and dipeptides. In conclusion, these pilot data have identified IR and T2DM metabolomics panels as potential novel biomarkers of IR and identified metabolites associated with T2DM, with possible diagnostic and therapeutic applications. Further studies to confirm these associations in prospective cohorts are warranted.

19.
Front Pharmacol ; 11: 616157, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33664666

RESUMEN

Metformin is widely used in the treatment of Type 2 Diabetes Mellitus (T2DM). However, it is known to have beneficial effects in many other conditions, including obesity and cancer. In this study, we aimed to investigate the metabolic effect of metformin in T2DM and its impact on obesity. A mass spectrometry (MS)-based metabolomics approach was used to analyze samples from two cohorts, including healthy lean and obese control, and lean as well as obese T2DM patients on metformin regimen in the last 6 months. The results show a clear group separation and sample clustering between the study groups due to both T2DM and metformin administration. Seventy-one metabolites were dysregulated in diabetic obese patients (30 up-regulated and 41 down-regulated), and their levels were unchanged with metformin administration. However, 30 metabolites were dysregulated (21 were up-regulated and 9 were down-regulated) and then restored to obese control levels by metformin administration in obese diabetic patients. Furthermore, in obese diabetic patients, the level of 10 metabolites was dysregulated only after metformin administration. Most of these dysregulated metabolites were dipeptides, aliphatic amino acids, nucleic acid derivatives, and urea cycle components. The metabolic pattern of 62 metabolites was persistent, and their levels were affected by neither T2DM nor metformin in obesity. Interestingly, 9 metabolites were significantly dysregulated between lean and obese cohorts due to T2DM and metformin regardless of the obesity status. These include arginine, citrulline, guanidoacetic acid, proline, alanine, taurine, 5-hydroxyindoleacetic acid, and 5-hydroxymethyluracil. Understanding the metabolic alterations taking place upon metformin treatment would shed light on possible molecular targets of metformin, especially in conditions like T2DM and obesity.

20.
Nutrients ; 11(5)2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31052277

RESUMEN

PURPOSE: This study examined the effect of permissive underfeeding compared to target feeding and intensive insulin therapy (IIT) compared to conventional insulin therapy (CIT) on the inflammatory mediators monocyte chemoattractant protein 1 (MCP-1), soluble intercellular adhesion molecule 1 (sICAM-1), and tissue factor (TF) in critically ill patients. METHODOLOGY: This was a substudy of a 2 × 2 factorial design randomized controlled trial in which intensive care unit (ICU) patients were randomized into permissive underfeeding compared to target feeding groups and into IIT compared to CIT groups (ISRCTN96294863). In this substudy, we included 91 patients with almost equal numbers across randomization groups. Blood samples were collected at baseline and at days 3, 5, and 7 of an ICU stay. Linear mixed models were used to assess the differences in MCP-1, sICAM-1, and TF across randomization groups over time. RESULTS: Baseline characteristics were balanced across randomization groups. Daily caloric intake was significantly higher in the target feeding than in the permissive underfeeding groups (P-value < 0.01), and the daily insulin dose was significantly higher in the IIT than in the CIT groups (P-value < 0.01). MCP-1, sICAM-1, and TF did not show any significant difference between the randomization groups, while there was a time effect for MCP-1. Baseline sequential organ failure assessment (SOFA) score and platelets had a significant effect on sICAM-1 (P-value < 0.01). For TF, there was a significant association with age (P-value < 0.01). CONCLUSIONS: Although it has been previously demonstrated that insulin inhibits MCP-1, sICAM-1 in critically ill patients, and TF in non-critically ill patients, our study demonstrated that IIT in critically ill patients did not affect these inflammatory mediators. Similarly, caloric intake had a negligible effect on the inflammatory mediators studied.


Asunto(s)
Restricción Calórica , Quimiocina CCL2/metabolismo , Enfermedad Crítica/terapia , Insulina/administración & dosificación , Molécula 1 de Adhesión Intercelular/metabolismo , Tromboplastina/metabolismo , Adulto , Anciano , Cuidados Críticos , Enfermedad Crítica/mortalidad , Femenino , Mortalidad Hospitalaria , Humanos , Masculino , Persona de Mediana Edad , Necesidades Nutricionales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA