Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 12277, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38806546

RESUMEN

In recent years, numerous image encryption schemes have been developed that demonstrate different levels of effectiveness in terms of robust security and real-time applications. While a few of them outperform in terms of robust security, others perform well for real-time applications where less processing time is required. Balancing these two aspects poses a challenge, aiming to achieve efficient encryption without compromising security. To address this challenge, the proposed research presents a robust data security approach for encrypting grayscale images, comprising five key phases. The first and second phases of the proposed encryption framework are dedicated to the generation of secret keys and the confusion stage, respectively. While the level-1, level-2, and level-2 diffusions are performed in phases 3, 4, and 5, respectively, The proposed approach begins with secret key generation using chaotic maps for the initial pixel scrambling in the plaintext image, followed by employing the Fibonacci Transformation (FT) for an additional layer of pixel shuffling. To enhance security, Tribonacci Transformation (TT) creates level-1 diffusion in the permuted image. Level-2 diffusion is introduced to further strengthen the diffusion within the plaintext image, which is achieved by decomposing the diffused image into eight-bit planes and implementing XOR operations with corresponding bit planes that are extracted from the key image. After that, the discrete wavelet transform (DWT) is employed to develop secondary keys. The DWT frequency sub-band (high-frequency sub-band) is substituted using the substitution box process. This creates further diffusion (level 3 diffusion) to make it difficult for an attacker to recover the plaintext image from an encrypted image. Several statistical tests, including mean square error analysis, histogram variance analysis, entropy assessment, peak signal-to-noise ratio evaluation, correlation analysis, key space evaluation, and key sensitivity analysis, demonstrate the effectiveness of the proposed work. The proposed encryption framework achieves significant statistical values, with entropy, correlation, energy, and histogram variance values standing at 7.999, 0.0001, 0.0156, and 6458, respectively. These results contribute to its robustness against cyberattacks. Moreover, the processing time of the proposed encryption framework is less than one second, which makes it more suitable for real-world applications. A detailed comparative analysis with the existing methods based on chaos, DWT, Tribonacci transformation (TT), and Fibonacci transformation (FT) reveals that the proposed encryption scheme outperforms the existing ones.

2.
J Imaging Inform Med ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499705

RESUMEN

The incidence of COVID-19, a virus that is responsible for infections in the upper respiratory tract and lungs, witnessed a daily rise in fatalities throughout the pandemic. The timely identification of COVID-19 can contribute to the formulation of strategies to control the disease and the selection of an appropriate treatment pathway. Given the necessity for broader COVID-19 diagnosis, researchers have developed more advanced, rapid, and efficient detection methods. By conducting an initial comparative analysis of various widely used convolutional neural network (CNN) models, we determine an appropriate CNN model. Subsequently, we enhance the chosen CNN model using the feature fusion strategy from multi-modal imaging datasets. Moreover, the Jaya optimization technique is employed to determine the optimal weighting for merging these dual features into a single feature vector. An SVM classifier is employed to categorize samples as either COVID-19 positive or negative. For the purpose of experimentation, a standard dataset consisting of 10,000 samples is used, divided equally between COVID-19 positive and negative classes. The experimental outcomes demonstrate that the proposed fine-tuned system, coupled with optimization techniques for multi-modal data, exhibits superior performance, achieving accuracy rates of 98.7% as compared to the existing state-of-the-art network models.

3.
Sensors (Basel) ; 22(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36502144

RESUMEN

According to the standard paradigm, white box cryptographic primitives are used to block black box attacks and protect sensitive information. This is performed to safeguard the protected information and keys against black box assaults. An adversary in such a setting is aware of the method and can analyze many system inputs and outputs, but is blind to the specifics of how a critical instantiation primitive is implemented. This is the focus of white-box solutions, which are designed to withstand attacks that come from the execution environment. This is significant because an attacker may obtain unrestricted access to the program's execution in this environment. The purpose of this article is to assess the efficiency of white-box implementations in terms of security. Our contribution is twofold: first, we explore the practical implementations of white-box approaches, and second, we analyze the theoretical foundations upon which these implementations are built. First, a research proposal is crafted that details white-box applications of DES and AES encryption algorithms. To begin, this preparation is necessary. The research effort planned for this project also includes cryptanalysis of these techniques. Once the general cryptanalysis results have been examined, the white-box design approaches will be covered. We have decided to launch an investigation into creating a theoretical model for white box, since no prior formal definitions have been offered, and suggested implementations have not been accompanied by any assurance of security. This is due to the fact that no formal definition of "white box" has ever been provided. In this way lies the explanation for why this is the situation. We define WBC to encompass the security requirements of WBC specified over a white box cryptography technology and a security concept by studying formal models of obfuscation and shown security. This definition is the product of extensive investigation. This state-of-the-art theoretical model provides a setting in which to investigate the security of white-box implementations, leading to a wide range of positive and negative conclusions. As a result, this paper includes the results of a Digital Signature Algorithm (DSA) study which may be put to use in the real world with signature verification. Possible future applications of White Box Cryptography (WBC) research findings are discussed in light of these purposes and areas of investigation.


Asunto(s)
Algoritmos , Seguridad Computacional , Modelos Teóricos
4.
Comput Intell Neurosci ; 2022: 7307552, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36131899

RESUMEN

There is no question about the value that digital signal processing brings to the area of biomedical research. DSP processors are used to sample and process the analog inputs that are received from a human organ. These inputs come from the organ itself. DSP processors, because of their multidimensional data processing nature, are the electrical components that take up the greatest space and use the most power. In this age of digital technology and electronic gizmos, portable biomedical devices represent an essential step forward in technological advancement. Electrocardiogram (ECG) units are among the most common types of biomedical equipment, and their functions are absolutely necessary to the process of saving human life. In the latter part of the 1990s, portable electrocardiogram (ECG) devices began to appear on the market, and research into their signal processing and electronics design capabilities continues today. System-on-chip (SoC) design refers to the process through which the separate computing components of a DSP unit are combined onto a single chip in order to achieve greater power and space efficiency. In the design of biomedical DSP devices, this body of research presents a number of different solutions for reducing power consumption and space requirements. Using serial or parallel data buses, which are often the region that consumes the most power, it is possible to send data between the system-on-chip (SoC) and other components. To cut down on the number of needless switching operations that take place during data transmission, a hybrid solution that makes use of the shift invert bus encoding scheme has been developed. Using a phase-encoded shift invert bus encoding approach, which embeds the two-bit indication lines into a single-bit encoded line, is one way to solve the issue of having two distinct indicator bits. This method reduces the problem. The PESHINV approach is compared to the SHINV method that already exists, and the comparison reveals that the suggested PESHINV method reduces the total power consumption of the encoding circuit by around 30 percent. The computing unit of the DSP processor is the target of further optimization efforts. Virtually, all signal processing methods need memory and multiplier circuits to function properly.


Asunto(s)
Electrocardiografía , Procesamiento de Señales Asistido por Computador , Electrocardiografía/métodos , Diseño de Equipo , Humanos , Aprendizaje Automático
5.
Sensors (Basel) ; 21(21)2021 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34770346

RESUMEN

Signcryption schemes leveraging chaotic constructions have garnered significant research interest in recent years. These schemes have proffered practical solutions towards addressing the vast security vulnerabilities in Electronic Cash Systems (ECS). The schemes can seamlessly perform message confidentiality and authentication simultaneously. Still, their applications in emerging electronic cash platforms require a higher degree of complexity in design and robustness, especially as billions of online transactions are conducted globally. Consequently, several security issues arise from using open wireless channels for online business transactions. In order to guarantee the security of user information over these safety-limited channels, sophisticated security schemes are solely desired. However, the existing signcryption schemes cannot provide the required confidentiality and authentication for user information on these online platforms. Therefore, the need for certificateless group signcryption schemes (CGSS) becomes imperative. This paper presents an efficient electronic cash system based on CGSS using conformable chaotic maps (CCM). In our design, any group signcrypter would encrypt information/data with the group manager (GM) and send it to the verifier, who confirms the authenticity of the signcrypted information/data using the public criteria of the group. Additionally, the traceability, unforgeability, unlinkability, and robust security of the proposed CGSS-CCM ECS scheme have been built leveraging computationally difficult problems. Performance evaluation of the proposed CGSS-CCM ECS scheme shows that it is secure from the Indistinguishably Chosen Ciphertext Attack. Finally, the security analysis of the proposed technique shows high efficiency in security-vulnerable applications. Overall, the scheme gave superior security features compared to the existing methods in the preliminaries.


Asunto(s)
Seguridad Computacional , Telemedicina , Algoritmos , Confidencialidad , Electrónica
6.
Sensors (Basel) ; 21(21)2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34770535

RESUMEN

The place of public key cryptography (PKC) in guaranteeing the security of wireless networks under human-centered IoT environments cannot be overemphasized. PKC uses the idea of paired keys that are mathematically dependent but independent in practice. In PKC, each communicating party needs the public key and the authorized digital certificate of the other party to achieve encryption and decryption. In this circumstance, a directory is required to store the public keys of the participating parties. However, the design of such a directory can be cost-prohibitive and time-consuming. Recently, identity-based encryption (IBE) schemes have been introduced to address the vast limitations of PKC schemes. In a typical IBE system, a third-party server can distribute the public credentials to all parties involved in the system. Thus, the private key can be harvested from the arbitrary public key. As a result, the sender could use the public key of the receiver to encrypt the message, and the receiver could use the extracted private key to decrypt the message. In order to improve systems security, new IBE schemes are solely desired. However, the complexity and cost of designing an entirely new IBE technique remain. In order to address this problem, this paper presents a provably secure IBE transformation model for PKC using conformable Chebyshev chaotic maps under the human-centered IoT environment. In particular, we offer a robust and secure IBE transformation model and provide extensive performance analysis and security proofs of the model. Finally, we demonstrate the superiority of the proposed IBE transformation model over the existing IBE schemes. Overall, results indicate that the proposed scheme posed excellent security capabilities compared to the preliminary IBE-based schemes.


Asunto(s)
Seguridad Computacional , Confidencialidad , Algoritmos , Computadores , Humanos
7.
Sensors (Basel) ; 21(15)2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34372466

RESUMEN

In a channel shared by several nodes, the scheduling algorithm is a key factor to avoiding collisions in the random access-based approach. Commonly, scheduling algorithms can be used to enhance network performance to meet certain requirements. Therefore, in this paper we propose a Delay-Aware Media Access Control (DAMAC) protocol for monitoring time-sensitive applications over multi-hop in Underwater Acoustic Sensor Networks (UASNs), which relies on the random access-based approach where each node uses Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) to determine channel status, switches nodes on and off to conserve energy, and allows concurrent transmissions to improve the underwater communication in the UASNs. In addition, DAMAC does not require any handshaking packets prior to data transmission, which helps to improve network performance in several metrics. The proposed protocol considers the long propagation delay to allow concurrent transmissions, meaning nodes are scheduled to transmit their data packets concurrently to exploit the long propagation delay between underwater nodes. The simulation results show that DAMAC protocol outperforms Aloha, BroadcastMAC, RMAC, Tu-MAC, and OPMAC protocols under varying network loads in terms of energy efficiency, communication overhead, and fairness of the network by up to 65%, 45%, and 726%, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA