Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Plants (Basel) ; 12(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37896017

RESUMEN

A comprehensive study on chemical characterization of essential oil (EO) constituents of a rarely explored plant species (Matricaria aurea) of the Asteraceae family grown in Saudi Arabia and Jordan was carried out. Analyses were conducted employing gas chromatographic approaches such as GC-MS, GC-FID, and Co-GC, as well as RT, LRI determination, and database and literature comparisons, on two diverse stationary phase columns, which led to the identification of a total of 135 constituents from both EOs. Oxygenated sesquiterpenes were found to be the most predominant chemical class of Saudi M. aurea EOs, in which α-bisabolol (27.8%), γ-gurjunenepoxide (21.7%), (E, E)-α-farnesene (16.3%), and cis-spiroether (7.5%) were present as major components. In contrast, the most dominant chemical class of Jordanian M. aurea oil was found to be sesquiterpene hydrocarbons, where (E, E)-α-farnesene (50.2%), γ-gurjunenepoxide (8.5%), (E)-ß-farnesene (8.1%), and (Z, E)-α-farnesene (4.4%) were detected as chief constituents. It is interesting to mention here that Saudi and Jordanian M. aurea EOs showed quite interesting chemical compositions and were found to have different chemotypes when compared to previously reported M. aurea EO compositions.

2.
Plants (Basel) ; 12(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36771651

RESUMEN

Seeds and fruits of Citrullus colocynthis have been reported to possess huge potential for the development of phytopharmaceuticals with a wide range of biological activities. Thus, in the current study, we are reporting the potential antimicrobial and anticancer properties of C. colocynthis seeds extracted with solvents of different polarities, including methanol (M.E.), hexane (H.E.), and chloroform (C.E.). Antimicrobial properties of C. colocynthis seeds extracts were evaluated on Gram-positive and Gram-negative bacteria, whereas, anticancer properties were tested on four different cell lines, including HepG2, DU145, Hela, and A549. All the extracts have demonstrated noteworthy antimicrobial activities with a minimum inhibitory concentration (MIC) ranging from 0.9-62.5 µg/mL against Klebsiella planticola and Staphylococcus aureus; meanwhile, they were found to be moderately active (MIC 62.5-250 µg/mL) against Escherichia coli and Micrococcus luteus strains. Hexane extracts have demonstrated the highest antimicrobial activity against K. planticola with an MIC value of 0.9 µg/mL, equivalent to that of the standard drug ciprofloxacin used as positive control in this study. For anticancer activity, all the extracts of C. colocynthis seeds were found to be active against all the tested cell lines (IC50 48.49-197.96 µg/mL) except for the chloroform extracts, which were found to be inactive against the HepG2 cell line. The hexane extract was found to possess the most prominent anticancer activity when compared to other extracts and has demonstrated the highest anticancer activity against the DU145 cell line with an IC50 value of 48.49 µg/mL. Furthermore, a detailed phytoconstituents analysis of all the extracts of C. colocynthis seeds were performed using GC-MS and GC-FID techniques. Altogether, 43 phytoconstituents were identified from the extracts of C. colocynthis seeds, among which 21, 12, and 16 components were identified from the H.E., C.E., and M.E. extracts, respectively. Monoterpenes (40.4%) and oxygenated monoterpenes (41.1%) were the most dominating chemical class of compounds from the hexane and chloroform extracts, respectively; whereas, in the methanolic extract, oxygenated aliphatic hydrocarbons (77.2%) were found to be the most dominating chemical class of compounds. To the best of our knowledge, all the phytoconstituents identified in this study are being reported for the first time from the C. colocynthis.

3.
Life (Basel) ; 12(11)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36431020

RESUMEN

Solvents play an important role in the extraction process by considerably affecting the amount and nature of secondary metabolites of medicinal plants. Thus, the effect of solvents must be investigated to obtain desired biological properties of plant extracts. In the current study, we extracted aerial parts of Artemisia judaica, native to Saudi Arabia, in three different solvents, including methanol (MeOH), hexane (Hex), and chloroform (Chl). Obtained extracts from the aerial parts of A. judaica were analysed by GC-MS and GC-FID techniques, which resulted in the identification of 46, 18, and 17 phytoconstituents from the Hex, Chl, and MeOH extracts, respectively. All the extracts contain oxygenated terpenes, aliphatic hydrocarbons, and aromatics as major classes of compounds in varying amounts. Among the various phytoconstituents identified, piperitone was the dominant compound and was found in all the extracts in different amounts, specifically, 28.8, 26.1, and 20.1% in the Chl, MeOH, and Hex extracts, respectively. Moreover, all these extracts (Chl, MeOH, and Hex) were tested for the antimicrobial properties on both Gram-positive and negative bacteria as well as for their anticancer properties on four different cell lines including HepG2, DU145, Hela, and A549. Among the different extracts, the Hex and Chl extracts demonstrated identical antimicrobial properties, while the Chl extract showed superior anticancer properties when compare to the other extracts. The higher biological properties of Chl extracts including both antimicrobial and anticancer activities may be attributed to the presence of large amounts of piperitone and/or santonin, which are distinctly present in excess amounts in the Chl extract.

4.
Saudi J Biol Sci ; 29(3): 1801-1807, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35280530

RESUMEN

Phytochemicals from plant extracts belong to an important source of natural products which have demonstrated excellent cytotoxic activities. However, plants of different origins exhibit diverse chemical composition and bioactivities. Therefore, discovery of plants based new anticancer agents from different parts of the world is always challenging. In this study, methanolic extracts of different parts of 11 plants from Saudi Arabia have been tested in vitro for their anticancer potential on human liver cancer cell line (HepG2). Particularly, for this study, plants from Asteraceae, Resedaceae and Polygonaceae families were chosen on the basis of locally available ethnobotanical data and their medicinal properties. Among 12 tested extract samples, three samples obtained from Artemisia monosperma stem, Ochradenus baccatus aerial parts and Pulicaria glutinosa stem have demonstrated interesting cytotoxic activities with a cell viability of 29.3%, 28.4% and 24.2%, respectively. Whereas, four plant extracts including Calendula arvensis aerial parts, Scorzonera musilii whole plant, A. monosperma leaves show moderate anticancer properties bearing a cell viability ranging from 11.9 to 16.7%. The remaining extracts have shown poor cytotoxic activities. Subsequently, GC-MS analysis of methanolic extracts of four most active plants extracts such as C. comosum, O. baccatus, P. glutinosa and A. monosperma detected the presence of 41 phytomolecules. Among which 3-(4-hydroxyphenyl) propionitrile (1), 8,11-octadecadiynoic acid methyl ester (2), 6,7-dimethoxycoumarin (3) and 1-(2-hydroxyphenyl) ethenone (4) were found to be the lead compounds of C. comosum, O. baccatus P. glutinosa and A. monosperma, respectively.

5.
ACS Omega ; 7(6): 4812-4820, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35187301

RESUMEN

Eco-friendly approaches for the preparation of nanomaterials have recently attracted considerable attention of scientific community due to rising environmental distresses. The aim of the current study is to prepare titanium dioxide (TiO2) nanoparticles (NPs) using an eco-friendly approach and investigate their performance for the photocatalytic degradation of hazardous organic dyes. For this, TiO2 NPs were prepared by using the aqueous extract of the Pulicaria undulata (L.) plant in a single step at room temperature. Energy-dispersive X-ray spectroscopy established the presence of both titanium and oxygen in the sample. X-ray diffraction revealed the formation of crystalline, anatase-phase TiO2 NPs. On the other hand, transmission election microscopy confirmed the formation of spherical shaped NPs. The presence of residual phytomolecules as capping/stabilization agents is confirmed by UV-vis analysis and Fourier-transform Infrared spectroscopy. Indeed, in the presence of P. undulata, the anatase phase of TiO2 is stabilized at a significantly lower temperature (100 °C) without using any external stabilizing agent. The green synthesized TiO2 NPs were used to investigate their potential for the photocatalytic degradation of hazardous organic dyes including methylene blue and methyl orange under UV-visible light irradiation. Due to the small size and high dispersion of NPs, almost complete degradation (∼95%) was achieved in a short period of time (between 1 and 2 h). No significant difference in the photocatalytic activity of the TiO2 NPs was observed even after repeated use (three times) of the photocatalyst. Overall, the green synthesized TiO2 NPs exhibited considerable potential for fast and eco-friendly removal of harmful organic dyes.

6.
Molecules ; 28(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36615440

RESUMEN

Green syntheses of metallic nanoparticles using plant extracts as effective sources of reductants and stabilizers have attracted decent popularity due to their non-toxicity, environmental friendliness and rapid nature. The current study demonstrates the ecofriendly, facile and inexpensive synthesis of silver nanoparticles (AP-AgNPs) using the extract of aerial parts of the Anthemis pseudocotula Boiss. plant (AP). Herein, the aerial parts extract of AP performed a twin role of a reducing as well as a stabilizing agent. The green synthesized AP-AgNPs were characterized by several techniques such as XRD, UV-Vis, FT-IR, TEM, SEM and EDX. Furthermore, the antimicrobial and antibiofilm activity of as-prepared AP-AgNPs were examined by a standard two-fold microbroth dilution method and tissue culture plate methods, respectively, against several Gram-negative and Gram-positive bacterial strains and fungal species such as Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), multidrug-resistant Pseudomonas aeruginosa (MDR-PA) and Acinetobacter baumannii (MDR-AB), methicillin-resistant S. aureus (MRSA) and Candida albicans (C. albicans) strains. The antimicrobial activity results clearly indicated that the Gram-negative bacteria MDR-PA was most affected by AgNPs as compared to other Gram-negative and Gram-positive bacteria and fungi C. albicans. Whereas, in the case of antibiofilm activity, it has been found that AgNPs at 0.039 mg/mL, inhibit biofilms formation of Gram-negative bacteria i.e., MDR-PA, E. coli, and MDR-AB by 78.98 ± 1.12, 65.77 ± 1.05 and 66.94 ± 1.35%, respectively. On the other hand, at the same dose (i.e., 0.039 mg/mL), AP-AgNPs inhibits biofilm formation of Gram-positive bacteria i.e., MRSA, S. aureus and fungi C. albicans by 67.81 ± 0.99, 54.61 ± 1.11 and 56.22 ± 1.06%, respectively. The present work indicates the efficiency of green synthesized AP-AgNPs as good antimicrobial and antibiofilm agents against selected bacterial and fungal species.


Asunto(s)
Anthemis , Antiinfecciosos , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Candida albicans , Escherichia coli , Bacterias Gramnegativas , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana , Componentes Aéreos de las Plantas , Extractos Vegetales/farmacología , Pseudomonas aeruginosa , Plata/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus
7.
Materials (Basel) ; 14(12)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34206999

RESUMEN

The conventional physical and chemical synthetic methods for the preparation of metal nanoparticles have disadvantages as they use expensive equipment and hazardous chemicals which limit their applications for biomedical purposes, and are not environment friendly. However, for the synthesis of biocompatible nanomaterials, plant-based techniques are eco-friendly and easy to handle. Herein a simple, single-step biosynthesis of gold nanoparticles using aqueous extracts of Nigella sativa (NSE) and Zingiber officinale (GE) as a reducing and capping agent has been demonstrated. The formation of gold nanoparticles (Au NPs) was confirmed by X-ray diffraction, UV-Vis, and EDS spectroscopies. Spectroscopic and chromatographic analysis of GE and NSE revealed the presence of bioactive phytochemical constituents, such as gingerol, thymoquinone, etc., which successfully conjugated the surface of resulting Au NPs. TEM analysis indicated the formation of smaller-sized, less-aggregated, spherical-shaped Au NPs both in the case of GE (~9 nm) and NSE (~11 nm). To study the effect of the concentration of the extracts on the quality of resulting NPs and their anticancer properties, three different samples of Au NPs were prepared from each extract by varying the concentration of extracts while keeping the amount of precursor constant. In both cases, high-quality, spherical-shaped NPs were obtained, only at a high concentration of the extract, whereas at lower concentrations, larger-sized, irregular-shaped NPs were formed. Furthermore, the as-prepared Au NPs were evaluated for the anticancer properties against two different cell lines including MDA-MB-231 (breast cancer) and HCT 116 (colorectal cancer) cell lines. GE-conjugated Au NPs obtained by using a high concentration of the extract demonstrated superior anticancer properties when compared to NSE-conjugated counterparts.

8.
Plants (Basel) ; 11(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35009112

RESUMEN

A staggering number of nanomaterials-based products are being engineered and produced commercially. Many of these engineered nanomaterials (ENMs) are finally disposed into the soil through various routes in enormous quantities. Nanomaterials are also being specially tailored for their use in agriculture as nano-fertilizers, nano-pesticides, and nano-based biosensors, which is leading to their accumulation in the soil. The presence of ENMs considerably affects the soil microbiome, including the abundance and diversity of microbes. In addition, they also influence crucial microbial processes, such as nitrogen fixation, mineralization, and plant growth promoting activities. ENMs conduct in soil is typically dependent on various properties of ENMs and soil. Among nanoparticles, silver and zinc oxide have been extensively prepared and studied owing to their excellent industrial properties and well-known antimicrobial activities. Therefore, at this stage, it is imperative to understand how these ENMs influence the soil microbiome and related processes. These investigations will provide necessary information to regulate the applications of ENMs for sustainable agriculture and may help in increasing agrarian production. Therefore, this review discusses several such issues.

9.
Molecules ; 26(1)2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33374759

RESUMEN

Humans have witnessed three deadly pandemics so far in the twenty-first century which are associated with novel coronaviruses: SARS, Middle East respiratory syndrome (MERS), and COVID-19. All of these viruses, which are responsible for causing acute respiratory tract infections (ARTIs), are highly contagious in nature and/or have caused high mortalities. The recently emerged COVID-19 disease is a highly transmittable viral infection caused by another zoonotic novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Similar to the other two coronaviruses such as SARS-CoV-1 and MERS-CoV, SARS-CoV-2 is also likely to have originated from bats, which have been serving as established reservoirs for various pathogenic coronaviruses. Although, it is still unknown how SARS-CoV-2 is transmitted from bats to humans, the rapid human-to-human transmission has been confirmed widely. The disease first appeared in Wuhan, China, in December 2019 and quickly spread across the globe, infected 48,539,872 people, and caused 1,232,791 deaths in 215 countries, and the infection is still spreading at the time of manuscript preparation. So far, there is no definite line of treatment which has been approved or vaccine which is available. However, different types of potential vaccines and therapeutics have been evaluated and/or are under clinical trials against COVID-19. In this review, we summarize different types of acute respiratory diseases and briefly discuss earlier outbreaks of coronaviruses and compare their occurrence and pathogenicity with the current COVID-19 pandemic. Various epidemiological aspects of COVID-19 such as mode of spread, death rate, doubling time, etc., have been discussed in detail. Apart from this, different technical issues related to the COVID-19 pandemic including use of masks and other socio-economic problems associated with the pandemic have also been summarized. Additionally, we have reviewed various aspects of patient management strategies including mechanism of action, available diagnostic tools, etc., and also discussed different strategies for the development of effective vaccines and therapeutic combinations to deal with this viral outbreak. Overall, by the inclusion of various references, this review covers, in detail, the most important aspects of the COVID-19 pandemic.


Asunto(s)
COVID-19/epidemiología , Pandemias , Antivirales/uso terapéutico , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Humanos , SARS-CoV-2/aislamiento & purificación , Tratamiento Farmacológico de COVID-19
10.
Nanomaterials (Basel) ; 10(9)2020 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-32962292

RESUMEN

Plant extract of Pulicaria undulata (L.) was used as both reducing agent and stabilizing ligand for the rapid and green synthesis of gold (Au), silver (Ag), and gold-silver (Au-Ag) bimetallic (phase segregated/alloy) nanoparticles (NPs). These nanoparticles with different morphologies were prepared in two hours by stirring corresponding metal precursors in the aqueous solution of the plant extracts at ambient temperature. To infer the role of concentration of plant extract on the composition and morphology of NPs, we designed two different sets of experiments, namely (i) low concentration (LC) and (ii) high concentration (HC) of plant extract. In the case of using low concentration of the plant extract, irregular shaped Au, Ag, or phase segregated Au-Ag bimetallic NPs were obtained, whereas the use of higher concentrations of the plant extract resulted in the formation of spherical Au, Ag, and Au-Ag alloy NPs. The as-prepared Au, Ag, and Au-Ag bimetallic NPs showed morphology and composition dependent catalytic activity for the reduction of 4-nitrophenol (4-NPh) to 4-aminophenol (4-APh) in the presence of NaBH4. The bimetallic Au-Ag alloy NPs showed the highest catalytic activity compared to all other NPs.

11.
Pathogens ; 9(1)2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31963342

RESUMEN

The use of organic components from plants as an alternative antimicrobial agent is becoming popular due to the development of drug-resistance in various pathogens. Essential oils from fresh (MF-1) and dried (MD-1) roots of Salvadora persica L. were extracted and benzyl isothiocynate was determined as their chief constituent using GC-MS and GC-FID. The antibiofilm and antimicrobial activities of MD-1 and MF-1 against Streptococcus mutans a dental caries causing bacteria were determined using multiple assays. These activities were compared with chlorhexidine digluconate (CHX) and clove oil, well known antimicrobial agents for oral hygiene. Essential oils demonstrated IC50 values (10-11 µg/mL) comparable to that of CHX, showed a significant reduction (82 ± 7-87 ± 6%) of the biofilm formation at a very low concentration. These results were supported by RT-PCR studies showing change in the expression levels of AtlE, gtfB, ymcA and sodA genes involved in autolysis, biofilm formation and oxidative stress, respectively. The results presented in this study show the robust bactericidal and antibiofilm activity of MD-1 and MF-1 against S. mutans which is comparable to Chlorhexidine digluconate. Our results suggest that these essential oils can be as effective as CHX and hence can serve as a good alternative antimicrobial agent for oral hygiene.

12.
AMB Express ; 9(1): 176, 2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31673872

RESUMEN

Essential oils (EOs) from the stems and leaves of Origanum vulgare L. grown in Saudi Arabia and Jordan were analyzed by gas chromatography-mass spectrometry (GC-MS) and GC-flame ionization detector (FID) techniques on two different columns (polar and nonpolar). A detailed phytochemical analysis led to the identification of 153 constituents of these essential oils. Both Saudi and Jordanian plants are classified by chemotypes rich in cymyl-compounds. However, the Saudi Origanum contains carvacrol as the major component and is, thus, characterized as a carvacrol chemotype, while the Jordanian Origanum contains thymol as the major component, and, thus, it is classified as a thymol chemotype. In addition, the antimicrobial activities of the studied EOs and their major components, including carvacrol and thymol, were evaluated against various Gram-positive and Gram-negative microorganisms. All the tested compounds exhibited significant antimicrobial activity against all the tested bacteria. Among them, thymol demonstrated superior activity against all the tested organisms, followed by carvacrol. Moreover, results on oil composition and oil yield of O. vulgare L. from different parts of the world is compared in detail with the present outcomes.

13.
Nanomaterials (Basel) ; 9(10)2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31652612

RESUMEN

A facile method for synthesis of environmentally friendly magnetite nanomaterials (MNMs) was applied using hydrophobic biocomponents as capping and stabilizing agents. The biocomponents were extracted from Matricaria aurea (MAE) and Ochradenus baccatus (OBE) and used for the surface modification of MNMs to increase their dispersion efficiency on the collection of heavy crude oil spills. Synthesized MNM samples (MAE-MNMs and OBE-MNMs) were verified using thermogravimetric analysis; Fourier-transform infrared spectroscopy; transmission electron microscopy; dynamic light scattering, and vibrating-sample magnetometry. The application of these nanomaterials in the collection of oil spill showed that the MAE-MNMs and OBE-MNMs successfully collected 95% and 91% of the oil spill, respectively. These results support the potential use of these materials as eco-friendly composites for the successful collection of oil spills that might occur during offshore operations.

14.
Nanomaterials (Basel) ; 8(10)2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30347724

RESUMEN

In this study, an easy, rapid and eco-friendly method was used successfully to synthesize the magnetite nanoparticles (MNPs). In order to fine-tune the synthesized MNPs for the collection of heavy crude oil spills, the particles' surface was modified with green hydrophobic biocomponents that were extracted from Anthemis pseudocotula (AP). The surface modified reaction carried with that of the MNPs in the presence of n-hexane extract (APH) resulted in the formation of APH-MNPs, while in the presence of chloroform extract (APC), resulted in APC-MNPs formation. The as-formed MNPs were thoroughly characterized using transmittance electron microscopy, X-ray powder diffraction, vibrating sample magnetometer and thermogravimetric analysis. The efficiency of the surface-modified MNPs for the collection of oil spills in the presence of an external magnetic field was evaluated by taking different ratios of MNPs:crude oil. From the analysis of the results, we found that the APH-MNPs particles have higher efficiency in the collection of heavy crude oil than the corresponding APC-MNPs.

15.
AMB Express ; 7(1): 49, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28233286

RESUMEN

Organic compounds from plants are an attractive alternative to conventional antimicrobial agents. Therefore, two compounds namely M-1 and M-2 were purified from Origanum vulgare L. and were identified as carvacrol and thymol, respectively. Antimicrobial and antibiofilm activities of these compounds along with chlorhexidine digluconate using various assays was determined against dental caries causing bacteria Streptococcus mutans. The IC50 values of carvacrol (M-1) and thymol (M-2) against S. mutans were 65 and 54 µg/ml, respectively. Live and dead staining and the MTT assays reveal that a concentration of 100 µg/ml of these compounds reduced the viability and the metabolic activity of S. mutans by more than 50%. Biofilm formation on the surface of polystyrene plates was significantly reduced by M-1 and M-2 at 100 µg/ml as observed under scanning electron microscope and by colorimetric assay. These results were in agreement with RT-PCR studies. Wherein exposure to 25 µg/ml of M-1 and M-2 showed a 2.2 and 2.4-fold increase in Autolysin gene (AtlE) expression level, respectively. While an increase of 1.3 and 1.4 fold was observed in the super oxide dismutase gene (sodA) activity with the same concentrations of M-1 and M-2, respectively. An increase in the ymcA gene and a decrease in the gtfB gene expression levels was observed following the treatment with M-1 and M-2. These results strongly suggest that carvacrol and thymol isolated from O. vulgare L. exhibit good bactericidal and antibiofilm activity against S. mutans and can be used as a green alternative to control dental caries.

16.
Molecules ; 22(1)2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-28106856

RESUMEN

The synthesis of Palladium (Pd) nanoparticles by green methods has attracted remarkable attention in recent years because of its superiority above chemical approaches, owing to its low cost and ecological compatibility. In this present work, we describe a facile and environmentally friendly synthesis of Pd nanoparticles (Pd NPs) using an aqueous extract of aerial parts of Origanum vulgare L. (OV) as a bioreductant. This plant is available in many parts of the world as well as in Saudi Arabia and is known to be a rich source of phenolic components, a feature we fruitfully utilized in the synthesis of Pd NPs, using various concentrations of plant extracts. Moreover, the OV extract phytomolecules are not only accountable for the reduction and progression of nanoparticles, but they also act as stabilizing agents, which was confirmed by several characterization methods. The as-synthesized Pd nanoparticles (Pd NPs) were analyzed using ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and thermal gravimetric analysis (TGA). Further, FT-IR study has proven that the OV not merely represents a bioreductant but also functionalizes the nanoparticles. Furthermore, the green synthesized metallic Pd NPs were successfully applied as catalysts for selective oxidation of alcohols.


Asunto(s)
Tecnología Química Verde/métodos , Nanopartículas del Metal/química , Origanum/química , Paladio/química , Extractos Vegetales/química , Alcoholes/química , Catálisis , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Transmisión , Oxidación-Reducción
17.
Ultrason Sonochem ; 36: 474-480, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28069235

RESUMEN

The atom-efficient and green protocol for formation of pyrano[3,4-e][1,3]oxazines utilizing dimethyl carbonate under ultrasound irradiation in a presence of KF/basic alumina was reported. We provide a novel series of pyrano[3,4-e][1,3]oxazine derivatives interesting for biological screening tests. In general, it was found that ultrasound irradiations enable the reactions to occur which could not be carried out under silent conditions. These remarkable effects appeared in sonicated reactions can be reasonably interpreted in terms of acoustic cavitation phenomenon. Structures of the products were established on analytical and spectral data. This protocol offers several advantages attain many principles of green chemistry including, save energy, atom economy, clean reactions, inexpensive green reagent and use catalysts rather than stoichiometric reagents.

18.
Molecules ; 21(11)2016 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-27827968

RESUMEN

Microbicidal potential of silver nanoparticles (Ag-NPs) can be drastically improved by improving their solubility or wettability in the aqueous medium. In the present study, we report the synthesis of both green and chemical synthesis of Ag-NPs, and evaluate the effect of the dispersion qualities of as-prepared Ag-NPs from both methods on their antimicrobial activities. The green synthesis of Ag-NPs is carried out by using an aqueous solution of readily available Salvadora persica L. root extract (RE) as a bioreductant. The formation of highly crystalline Ag-NPs was established by various analytical and microscopic techniques. The rich phenolic contents of S. persica L. RE (Miswak) not only promoted the reduction and formation of NPs but they also facilitated the stabilization of the Ag-NPs, which was established by Fourier transform infrared spectroscopy (FT-IR) analysis. Furthermore, the influence of the volume of the RE on the size and the dispersion qualities of the NPs was also evaluated. It was revealed that with increasing the volume of RE the size of the NPs was deteriorated, whereas at lower concentrations of RE smaller size and less aggregated NPs were obtained. During this study, the antimicrobial activities of both chemically and green synthesized Ag-NPs, along with the aqueous RE of S. persica L., were evaluated against various microorganisms. It was observed that the green synthesized Ag-NPs exhibit comparable or slightly higher antibacterial activities than the chemically obtained Ag-NPs.


Asunto(s)
Antiinfecciosos/farmacología , Nanopartículas del Metal/química , Extractos Vegetales/farmacología , Sustancias Reductoras/farmacología , Salvadoraceae/química , Plata/farmacología , Antiinfecciosos/química , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Tecnología Química Verde/métodos , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Extractos Vegetales/química , Raíces de Plantas/química , Sustancias Reductoras/química , Plata/química , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier
19.
Int J Nanomedicine ; 11: 873-83, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27022256

RESUMEN

Recently, graphene and graphene-based materials have been increasingly used for various biological applications due to their extraordinary physicochemical properties. Here, we demonstrate the anticancer properties and apoptosis-inducing ability of silver doped highly reduced graphene oxide nanocomposites synthesized by employing green approach. These nano composites (PGE-HRG-Ag) were synthesized by using Pulicaria glutinosa extract (PGE) as a reducing agent and were evaluated for their anticancer properties against various human cancer cell lines with tamoxifen as the reference drug. A correlation between the amount of Ag nanoparticles on the surface of highly reduced graphene oxide (HRG) and the anticancer activity of nanocomposite was observed, wherein an increase in the concentration of Ag nanoparticles on the surface of HRG led to the enhanced anticancer activity of the nanocomposite. The nanocomposite PGE-HRG-Ag-2 exhibited more potent cytotoxicity than standard drug in A549 cells, a human lung cancer cell line. A detailed investigation was undertaken and Fluorescence activated cell sorting (FACS) analysis demonstrated that the nanocomposite PGE-HRG-Ag-2 showed G0/G1 phase cell cycle arrest and induced apoptosis in A549 cells. Studies such as, measurement of mitochondrial membrane potential, generation of reactive oxygen species (ROS) and Annexin V-FITC staining assay suggested that this compound induced apoptosis in human lung cancer cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Grafito/química , Neoplasias Pulmonares/patología , Nanocompuestos/química , Óxidos/química , Plata/química , Western Blotting , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Nanocompuestos/administración & dosificación , Pulicaria/química , Especies Reactivas de Oxígeno/metabolismo , Células Tumorales Cultivadas
20.
Nat Prod Res ; 30(20): 2360-3, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27008266

RESUMEN

Essential oil composition of Plectranthus asirensis grown in Saudi Arabia was chemically analysed for the first time by various gas chromatography techniques (GC-MS, GC-FID, Co-GC, LRI determination and database and literature searches) using two different stationary phase columns (polar and nonpolar). This analysis led to the characterisation of a total of 124 components representing 98.5% of the total oil composition. The results revealed that P. asirensis oil was mainly dominated by monoterpenoids (90.7%) in which most representative constituents were thymol (66.0 ± 0.36%), γ-terpinene (14.0 ± 0.18%), p-cymene (5.2 ± 0.06%) and ß-caryophyllene (3.0 ± 0.03%). It is worth mentioning here that this is the first report on the phytochemical constituents of P. asirensis.


Asunto(s)
Aceites Volátiles/análisis , Plectranthus/química , Cromatografía de Gases , Monoterpenos Ciclohexánicos , Cimenos , Cromatografía de Gases y Espectrometría de Masas , Monoterpenos/análisis , Monoterpenos/aislamiento & purificación , Sesquiterpenos Policíclicos , Arabia Saudita , Sesquiterpenos/aislamiento & purificación , Timol/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA