Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Epilepsy Res ; 192: 107139, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37068421

RESUMEN

Although the mechanisms of sudden unexpected death in epilepsy (SUDEP) are not yet well understood, generalised- or focal-to-bilateral tonic-clonic seizures (TCS) are a major risk factor. Previous studies highlighted alterations in structures linked to cardio-respiratory regulation; one structure, the amygdala, was enlarged in people at high risk of SUDEP and those who subsequently died. We investigated volume changes and the microstructure of the amygdala in people with epilepsy at varied risk for SUDEP since that structure can play a key role in triggering apnea and mediating blood pressure. The study included 53 healthy subjects and 143 patients with epilepsy, the latter separated into two groups according to whether TCS occur in years before scan. We used amygdala volumetry, derived from structural MRI, and tissue microstructure, derived from diffusion MRI, to identify differences between the groups. The diffusion metrics were obtained by fitting diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) models. The analyses were performed at the whole amygdala level and at the scale of amygdaloid nuclei. Patients with epilepsy showed larger amygdala volumes and lower neurite density indices (NDI) than healthy subjects; the left amygdala volumes were especially enhanced. Microstructural changes, reflected by NDI differences, were more prominent on the left side and localized in the lateral, basal, central, accessory basal and paralaminar amygdala nuclei; basolateral NDI lowering appeared bilaterally. No significant microstructural differences appeared between epilepsy patients with and without current TCS. The central amygdala nuclei, with prominent interactions from surrounding nuclei of that structure, project to cardiovascular regions and respiratory phase switching areas of the parabrachial pons, as well as to the periaqueductal gray. Consequently, they have the potential to modify blood pressure and heart rate, and induce sustained apnea or apneusis. The findings here suggest that lowered NDI, indicative of reduced dendritic density, could reflect an impaired structural organization influencing descending inputs that modulate vital respiratory timing and drive sites and areas critical for blood pressure control.


Asunto(s)
Epilepsias Parciales , Epilepsia , Muerte Súbita e Inesperada en la Epilepsia , Humanos , Imagen de Difusión Tensora/métodos , Apnea , Amígdala del Cerebelo/diagnóstico por imagen , Epilepsias Parciales/complicaciones , Epilepsias Parciales/diagnóstico por imagen
2.
medRxiv ; 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-36993394

RESUMEN

Although the mechanisms of sudden unexpected death in epilepsy (SUDEP) are not yet well understood, generalised- or focal-to-bilateral tonic-clonic seizures (TCS) are a major risk factor. Previous studies highlighted alterations in structures linked to cardio-respiratory regulation; one structure, the amygdala, was enlarged in people at high risk of SUDEP and those who subsequently died. We investigated volume changes and the microstructure of the amygdala in people with epilepsy at varied risk for SUDEP since that structure can play a key role in triggering apnea and mediating blood pressure. The study included 53 healthy subjects and 143 patients with epilepsy, the latter separated into two groups according to whether TCS occur in years before scan. We used amygdala volumetry, derived from structural MRI, and tissue microstructure, derived from diffusion MRI, to identify differences between the groups. The diffusion metrics were obtained by fitting diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) models. The analyses were performed at the whole amygdala level and at the scale of amygdaloid nuclei. Patients with epilepsy showed larger amygdala volumes and lower neurite density indices (NDI) than healthy subjects; the left amygdala volumes were especially enhanced. Microstructural changes, reflected by NDI differences, were more prominent on the left side and localized in the lateral, basal, central, accessory basal and paralaminar amygdala nuclei; basolateral NDI lowering appeared bilaterally. No significant microstructural differences appeared between epilepsy patients with and without current TCS. The central amygdala nuclei, with prominent interactions from surrounding nuclei of that structure, project to cardiovascular regions and respiratory phase switching areas of the parabrachial pons, as well as to the periaqueductal gray. Consequently, they have the potential to modify blood pressure and heart rate, and induce sustained apnea or apneusis. The findings here suggest that lowered NDI, indicative of reduced dendritic density, could reflect an impaired structural organization influencing descending inputs that modulate vital respiratory timing and drive sites and areas critical for blood pressure control.

3.
Transl Psychiatry ; 12(1): 491, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36414626

RESUMEN

The muscarinic receptor agonist xanomeline improved cognition in phase 2 trials in Alzheimer's disease and schizophrenia. We present data on the effect of KarXT (xanomeline-trospium) on cognition in schizophrenia from the 5-week, randomised, double-blind, placebo-controlled EMERGENT-1 trial (NCT03697252). Analyses included 125 patients with computerised Cogstate Brief Battery (CBB) subtest scores at baseline and endpoint. A post hoc subgroup analysis evaluated the effects of KarXT on cognitive performance in patients with or without clinically meaningful cognitive impairment at baseline, and a separate outlier analysis excluded patients with excessive intraindividual variability (IIV) across cognitive subdomains. ANCOVA models assessed treatment effects for completers and impairment subgroups, with or without removal of outliers. Sample-wide, cognitive improvement was numerically but not statistically greater with KarXT (n = 60) than placebo (n = 65), p = 0.16. However, post hoc analyses showed 65 patients did not exhibit clinically meaningful cognitive impairment at baseline, while eight patients had implausibly high IIV at one or both timepoints. Significant treatment effects were observed after removing outliers (KarXT n = 54, placebo n = 63; p = 0.04). Despite the small sample size, a robust (d = 0.50) and significant effect was observed among patients with cognitive impairment (KarXT n = 23, placebo n = 37; p = 0.03). These effects did not appear to be related to improvement in PANSS total scores (linear regression, R2 = 0.03). Collectively, these findings suggest that KarXT may have a separable and meaningful impact on cognition, particularly among patients with cognitive impairment.


Asunto(s)
Disfunción Cognitiva , Esquizofrenia , Tiadiazoles , Humanos , Esquizofrenia/complicaciones , Esquizofrenia/tratamiento farmacológico , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Tiadiazoles/uso terapéutico , Piridinas , Compuestos de Amonio Cuaternario/uso terapéutico
4.
PLoS One ; 17(9): e0274514, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36137154

RESUMEN

Patients with epilepsy, who later succumb to sudden unexpected death, show altered brain tissue volumes in selected regions. It is unclear whether the alterations in brain tissue volume represent changes in neurons or glial properties, since volumetric procedures have limited sensitivity to assess the source of volume changes (e.g., neuronal loss or glial cell swelling). We assessed a measure, entropy, which can determine tissue homogeneity by evaluating tissue randomness, and thus, shows tissue integrity; the measure is easily calculated from T1-weighted images. T1-weighted images were collected with a 3.0-Tesla MRI from 53 patients with tonic-clonic (TC) seizures and 53 healthy controls; images were bias-corrected, entropy maps calculated, normalized to a common space, smoothed, and compared between groups (TC patients and controls using ANCOVA; covariates, age and sex; SPM12, family-wise error correction for multiple comparisons, p<0.01). Decreased entropy, indicative of increased tissue homogeneity, appeared in major autonomic (ventromedial prefrontal cortex, hippocampus, dorsal and ventral medulla, deep cerebellar nuclei), motor (sensory and motor cortex), or both motor and autonomic regulatory sites (basal-ganglia, ventral-basal cerebellum), and external surfaces of the pons. The anterior and posterior thalamus and midbrain also showed entropy declines. Only a few isolated regions showed increased entropy. Among the spared autonomic regions was the anterior cingulate and anterior insula; the posterior insula and cingulate were, however, affected. The entropy alterations overlapped areas of tissue changes found earlier with volumetric measures, but were more extensive, and indicate widespread injury to tissue within critical autonomic and breathing regulatory areas, as well as prominent damage to more-rostral sites that exert influences on both breathing and cardiovascular regulation. The entropy measures provide easily-collected supplementary information using only T1-weighted images, showing aspects of tissue integrity other than volume change that are important for assessing function.


Asunto(s)
Encéfalo , Convulsiones , Encéfalo/diagnóstico por imagen , Cerebelo , Giro del Cíngulo , Humanos , Imagen por Resonancia Magnética/métodos , Convulsiones/diagnóstico por imagen
5.
Front Neurol ; 12: 623358, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899550

RESUMEN

Objective: To characterize regional brain metabolic differences in patients at high risk of sudden unexpected death in epilepsy (SUDEP), using fluorine-18-fluorodeoxyglucose positron emission tomography (18FDG-PET). Methods: We studied patients with refractory focal epilepsy at high (n = 56) and low (n = 69) risk of SUDEP who underwent interictal 18FDG-PET as part of their pre-surgical evaluation. Binary SUDEP risk was ascertained by thresholding frequency of focal to bilateral tonic-clonic seizures (FBTCS). A whole brain analysis was employed to explore regional differences in interictal metabolic patterns. We contrasted these findings with regional brain metabolism more directly related to frequency of FBTCS. Results: Regions associated with cardiorespiratory and somatomotor regulation differed in interictal metabolism. In patients at relatively high risk of SUDEP, fluorodeoxyglucose (FDG) uptake was increased in the basal ganglia, ventral diencephalon, midbrain, pons, and deep cerebellar nuclei; uptake was decreased in the left planum temporale. These patterns were distinct from the effect of FBTCS frequency, where increasing frequency was associated with decreased uptake in bilateral medial superior frontal gyri, extending into the left dorsal anterior cingulate cortex. Significance: Regions critical to cardiorespiratory and somatomotor regulation and to recovery from vital challenges show altered interictal metabolic activity in patients with frequent FBTCS considered to be at relatively high-risk of SUDEP, and shed light on the processes that may predispose patients to SUDEP.

6.
Neurology ; 95(17): e2427-e2441, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-32847951

RESUMEN

OBJECTIVE: To investigate the functional correlates of recurrent secondarily generalized seizures in temporal lobe epilepsy (TLE) using task-based fMRI as a framework to test for epilepsy-specific network rearrangements. Because the thalamus modulates propagation of temporal lobe onset seizures and promotes cortical synchronization during cognition, we hypothesized that occurrence of secondarily generalized seizures, i.e., focal to bilateral tonic-clonic seizures (FBTCS), would relate to thalamic dysfunction, altered connectivity, and whole-brain network centrality. METHODS: FBTCS occur in a third of patients with TLE and are a major determinant of disease severity. In this cross-sectional study, we analyzed 113 patients with drug-resistant TLE (55 left/58 right), who performed a verbal fluency fMRI task that elicited robust thalamic activation. Thirty-three patients (29%) had experienced at least one FBTCS in the year preceding the investigation. We compared patients with TLE-FBTCS to those without FBTCS via a multiscale approach, entailing analysis of statistical parametric mapping (SPM) 12-derived measures of activation, task-modulated thalamic functional connectivity (psychophysiologic interaction), and graph-theoretical metrics of centrality. RESULTS: Individuals with TLE-FBTCS had less task-related activation of bilateral thalamus, with left-sided emphasis, and left hippocampus than those without FBTCS. In TLE-FBTCS, we also found greater task-related thalamotemporal and thalamomotor connectivity, and higher thalamic degree and betweenness centrality. Receiver operating characteristic curves, based on a combined thalamic functional marker, accurately discriminated individuals with and without FBTCS. CONCLUSIONS: In TLE-FBTCS, impaired task-related thalamic recruitment coexists with enhanced thalamotemporal connectivity and whole-brain thalamic network embedding. Altered thalamic functional profiles are proposed as imaging biomarkers of active secondary generalization.


Asunto(s)
Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/fisiopatología , Tálamo/diagnóstico por imagen , Tálamo/fisiopatología , Adulto , Mapeo Encefálico , Estudios Transversales , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/fisiopatología , Epilepsia del Lóbulo Temporal/psicología , Epilepsia Tónico-Clónica/diagnóstico por imagen , Epilepsia Tónico-Clónica/fisiopatología , Femenino , Lateralidad Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Pruebas Neuropsicológicas , Desempeño Psicomotor , Curva ROC , Conducta Verbal
7.
Epilepsia ; 61(8): 1570-1580, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32683693

RESUMEN

OBJECTIVES: Hypoxia, or abnormally low blood-oxygen levels, often accompanies seizures and may elicit brain structural changes in people with epilepsy which contribute to central processes underlying sudden unexpected death in epilepsy (SUDEP). The extent to which hypoxia may be related to brain structural alterations in this patient group remains unexplored. METHODS: We analyzed high-resolution T1-weighted magnetic resonance imaging (MRI) to determine brain morphometric and volumetric alterations in people with generalized tonic-clonic seizures (GTCS) recorded during long-term video-electroencephalography (VEEG), recruited from two sites (n = 22), together with data from age- and sex-matched healthy controls (n = 43). Subjects were sub-divided into those with mild/moderate (GTCS-hypox-mild/moderate, n = 12) and severe (GTCS-hypox-severe, n = 10) hypoxia, measured by peripheral oxygen saturation (SpO2 ) during VEEG. Whole-brain voxel-based morphometry (VBM) and regional volumetry were used to assess group comparisons and correlations between brain structural measurements as well as the duration and extent of hypoxia during GTCS. RESULTS: Morphometric and volumetric alterations appeared in association with peri-GTCS hypoxia, including volume loss in the periaqueductal gray (PAG), thalamus, hypothalamus, vermis, cerebellum, parabrachial pons, and medulla. Thalamic and PAG volume was significantly reduced in GTCS patients with severe hypoxia compared with GTCS patients with mild/moderate hypoxia. Brainstem volume loss appeared in both hypoxia groups, although it was more extensive in those with severe hypoxia. Significant negative partial correlations emerged between thalamic and hippocampal volume and extent of hypoxia, whereas vermis and accumbens volumes declined with increasing hypoxia duration. SIGNIFICANCE: Brain structural alterations in patients with GTCS are related to the extent of hypoxia in brain sites that serve vital functions. Although the changes are associative only, they provide evidence of injury to regulatory brain sites related to respiratory manifestations of seizures.


Asunto(s)
Encéfalo/diagnóstico por imagen , Epilepsia Tónico-Clónica/metabolismo , Hipoxia/metabolismo , Muerte Súbita e Inesperada en la Epilepsia , Adulto , Encéfalo/patología , Encéfalo/fisiopatología , Estudios de Casos y Controles , Electroencefalografía , Epilepsia Tónico-Clónica/diagnóstico por imagen , Epilepsia Tónico-Clónica/fisiopatología , Femenino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tamaño de los Órganos , Estudios Prospectivos , Sueño , Factores de Tiempo , Grabación en Video , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Adulto Joven
8.
Epilepsia ; 60(4): 718-729, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30868560

RESUMEN

OBJECTIVE: The processes underlying sudden unexpected death in epilepsy (SUDEP) remain elusive, but centrally mediated cardiovascular or respiratory collapse is suspected. Volume changes in brain areas mediating recovery from extreme cardiorespiratory challenges may indicate failure mechanisms and allow prospective identification of SUDEP risk. METHODS: We retrospectively imaged SUDEP cases (n = 25), patients comparable for age, sex, epilepsy syndrome, localization, and disease duration who were high-risk (n = 25) or low-risk (n = 23), and age- and sex-matched healthy controls (n = 25) with identical high-resolution T1-weighted scans. Regional gray matter volume, determined by voxel-based morphometry, and segmentation-derived structure sizes were compared across groups, controlling for total intracranial volume, age, and sex. RESULTS: Substantial bilateral gray matter loss appeared in SUDEP cases in the medial and lateral cerebellum. This was less prominent in high-risk subjects and absent in low-risk subjects. The periaqueductal gray, left posterior and medial thalamus, left hippocampus, and bilateral posterior cingulate also showed volume loss in SUDEP. High-risk subjects showed left thalamic volume reductions to a lesser extent. Bilateral amygdala, entorhinal, and parahippocampal volumes increased in SUDEP and high-risk patients, with the subcallosal cortex enlarged in SUDEP only. Disease duration correlated negatively with parahippocampal volume. Volumes of the bilateral anterior insula and midbrain in SUDEP cases were larger the closer to SUDEP from magnetic resonance imaging. SIGNIFICANCE: SUDEP victims show significant tissue loss in areas essential for cardiorespiratory recovery and enhanced volumes in areas that trigger hypotension or impede respiratory patterning. Those changes may shed light on SUDEP pathogenesis and prospectively detect patterns identifying those at risk.


Asunto(s)
Cerebelo/patología , Lóbulo Límbico/patología , Mesencéfalo/patología , Muerte Súbita e Inesperada en la Epilepsia/patología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
9.
Front Neurol ; 10: 185, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30891003

RESUMEN

The elusive nature of sudden unexpected death in epilepsy (SUDEP) has led to investigations of mechanisms and identification of biomarkers of this fatal scenario that constitutes the leading cause of premature death in epilepsy. In this short review, we compile evidence from structural and functional neuroimaging that demonstrates alterations to brain structures and networks involved in central autonomic and respiratory control in SUDEP and those at elevated risk. These findings suggest that compromised central control of vital regulatory processes may contribute to SUDEP. Both structural changes and dysfunctional interactions indicate potential mechanisms underlying the fatal event; contributions to individual risk prediction will require further study. The nature and sites of functional disruptions suggest potential non-invasive interventions to overcome failing processes.

10.
Neuroimage Clin ; 20: 205-215, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30094170

RESUMEN

Objective: Generalized tonic-clonic seizures are accompanied by cardiovascular and respiratory sequelae that threaten survival. The frequency of these seizures is a major risk factor for sudden unexpected death in epilepsy (SUDEP), a leading cause of untimely death in epilepsy. The circumstances accompanying such fatal events suggest a cardiovascular or respiratory failure induced by unknown neural processes rather than an inherent cardiac or lung deficiency. Certain cortical regions, especially the insular, cingulate, and orbitofrontal cortices, are key structures that integrate sensory input and influence diencephalic and brainstem regions regulating blood pressure, cardiac rhythm, and respiration; output from those cortical regions compromised by epilepsy-associated injury may lead to cardiorespiratory dysregulation. The aim here was to assess changes in cortical integrity, reflected as cortical thickness, relative to healthy controls. Cortical alterations in areas that influence cardiorespiratory action could contribute to SUDEP mechanisms. Methods: High-resolution T1-weighted images were collected with a 3.0-Tesla MRI scanner from 53 patients with generalized tonic-clonic seizures (Mean age ±â€¯SD: 37.1 ±â€¯12.6 years, 22 male) at Case Western Reserve University, University College London, and the University of California at Los Angeles. Control data included 530 healthy individuals (37.1 ±â€¯12.6 years; 220 male) from UCLA and two open access databases (OASIS and IXI). Cortical thickness group differences were assessed at all non-cerebellar brain surface locations (P < 0.05 corrected). Results: Increased cortical thickness appeared in post-central gyri, insula, and subgenual, anterior, posterior, and isthmus cingulate cortices. Post-central gyri increases were greater in females, while males showed more extensive cingulate increases. Frontal and temporal cortex, lateral orbitofrontal, frontal pole, and lateral parietal and occipital cortices showed thinning. The extents of thickness changes were sex- and hemisphere-dependent, with only males exhibiting right-sided and posterior cingulate thickening, while females showed only left lateral orbitofrontal thinning. Regional cortical thickness showed modest correlations with seizure frequency, but not epilepsy duration. Significance: Cortical thickening and thinning occur in patients with generalized tonic-clonic seizures, in cardiovascular and somatosensory areas, with extent of changes sex- and hemisphere-dependent. The data show injury in key autonomic and respiratory cortical areas, which may contribute to dysfunctional cardiorespiratory patterns during seizures, as well as to longer-term SUDEP risk.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiopatología , Imagen por Resonancia Magnética/métodos , Convulsiones/diagnóstico por imagen , Convulsiones/fisiopatología , Adolescente , Adulto , Muerte Súbita/prevención & control , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tamaño de los Órganos/fisiología , Adulto Joven
11.
Front Neurol ; 8: 544, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29085330

RESUMEN

BACKGROUND: Sudden unexpected death in epilepsy (SUDEP) is common among young people with epilepsy. Individuals who are at high risk of SUDEP exhibit regional brain structural and functional connectivity (FC) alterations compared with low-risk patients. However, less is known about network-based FC differences among critical cortical and subcortical autonomic regulatory brain structures in temporal lobe epilepsy (TLE) patients at high risk of SUDEP. METHODS: 32 TLE patients were risk-stratified according to the following clinical criteria: age of epilepsy onset, duration of epilepsy, frequency of generalized tonic-clonic seizures, and presence of nocturnal seizures, resulting in 14 high-risk and 18 low-risk cases. Resting-state functional magnetic resonance imaging (rs-fMRI) signal time courses were extracted from 11 bilateral cortical and subcortical brain regions involved in autonomic and other regulatory processes. After computing all pairwise correlations, FC matrices were analyzed using the network-based statistic. FC strength among the 11 brain regions was compared between the high- and low-risk patients. Increases and decreases in FC were sought, using high-risk > low-risk and low-risk > high-risk contrasts (with covariates age, gender, lateralization of epilepsy, and presence of hippocampal sclerosis). RESULTS: High-risk TLE patients showed a subnetwork with significantly reduced FC (t = 2.5, p = 0.029) involving the thalamus, brain stem, anterior cingulate, putamen and amygdala, and a second subnetwork with significantly elevated FC (t = 2.1, p = 0.031), which extended to medial/orbital frontal cortex, insula, hippocampus, amygdala, subcallosal cortex, brain stem, thalamus, caudate, and putamen. CONCLUSION: TLE patients at high risk of SUDEP showed widespread FC differences between key autonomic regulatory brain regions compared to those at low risk. The altered FC revealed here may help to shed light on the functional correlates of autonomic disturbances in epilepsy and mechanisms involved in SUDEP. Furthermore, these findings represent possible objective biomarkers which could help to identify high-risk patients and enhance SUDEP risk stratification via the use of non-invasive neuroimaging, which would require validation in larger cohorts, with extension to patients with other epilepsies and subjects who succumb to SUDEP.

12.
Sci Rep ; 7(1): 2444, 2017 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-28550282

RESUMEN

High-level regions of the ventral visual pathway respond more to intact objects compared to scrambled objects. The aim of this study was to determine if this selectivity for objects emerges at an earlier stage of processing. Visual areas (V1-V3) were defined for each participant using retinotopic mapping. Participants then viewed intact and scrambled images from different object categories (bottle, chair, face, house, shoe) while neural responses were measured using fMRI. Our rationale for using scrambled images is that they contain the same low-level properties as the intact objects, but lack the higher-order combinations of features that are characteristic of natural images. Neural responses were higher for scrambled than intact images in all regions. However, the difference between intact and scrambled images was smaller in V3 compared to V1 and V2. Next, we measured the spatial patterns of response to intact and scrambled images from different object categories. We found higher within-category compared to between category correlations for both intact and scrambled images demonstrating distinct patterns of response. Spatial patterns of response were more distinct for intact compared to scrambled images in V3, but not in V1 or V2. These findings demonstrate the emergence of selectivity to natural images in V3.


Asunto(s)
Reconocimiento Visual de Modelos/fisiología , Corteza Visual/fisiología , Campos Visuales/fisiología , Vías Visuales/fisiología , Adulto , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Estimulación Luminosa , Corteza Visual/diagnóstico por imagen , Vías Visuales/diagnóstico por imagen , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA