Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS Biol ; 19(8): e3001359, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34388147

RESUMEN

Microorganisms must make the right choice for nutrient consumption to adapt to their changing environment. As a consequence, bacteria and yeasts have developed regulatory mechanisms involving nutrient sensing and signaling, known as "catabolite repression," allowing redirection of cell metabolism to maximize the consumption of an energy-efficient carbon source. Here, we report a new mechanism named "metabolic contest" for regulating the use of carbon sources without nutrient sensing and signaling. Trypanosoma brucei is a unicellular eukaryote transmitted by tsetse flies and causing human African trypanosomiasis, or sleeping sickness. We showed that, in contrast to most microorganisms, the insect stages of this parasite developed a preference for glycerol over glucose, with glucose consumption beginning after the depletion of glycerol present in the medium. This "metabolic contest" depends on the combination of 3 conditions: (i) the sequestration of both metabolic pathways in the same subcellular compartment, here in the peroxisomal-related organelles named glycosomes; (ii) the competition for the same substrate, here ATP, with the first enzymatic step of the glycerol and glucose metabolic pathways both being ATP-dependent (glycerol kinase and hexokinase, respectively); and (iii) an unbalanced activity between the competing enzymes, here the glycerol kinase activity being approximately 80-fold higher than the hexokinase activity. As predicted by our model, an approximately 50-fold down-regulation of the GK expression abolished the preference for glycerol over glucose, with glucose and glycerol being metabolized concomitantly. In theory, a metabolic contest could be found in any organism provided that the 3 conditions listed above are met.


Asunto(s)
Glicerol Quinasa/metabolismo , Glicerol/metabolismo , Hexoquinasa/metabolismo , Microcuerpos/enzimología , Trypanosoma brucei brucei/metabolismo , Adenosina Trifosfato/metabolismo , Línea Celular
2.
PLoS Pathog ; 17(3): e1009204, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33647053

RESUMEN

Trypanosoma brucei, a protist responsible for human African trypanosomiasis (sleeping sickness), is transmitted by the tsetse fly where the procyclic forms of the parasite develop in the proline-rich (1-2 mM) and glucose-depleted digestive tract. Proline is essential for the midgut colonization of the parasite in the insect vector, however other carbon sources could be available and used to feed its central metabolism. Here we show that procyclic trypanosomes can consume and metabolize metabolic intermediates, including those excreted from glucose catabolism (succinate, alanine and pyruvate), with the exception of acetate, which is the ultimate end-product excreted by the parasite. Among the tested metabolites, tricarboxylic acid (TCA) cycle intermediates (succinate, malate and α-ketoglutarate) stimulated growth of the parasite in the presence of 2 mM proline. The pathways used for their metabolism were mapped by proton-NMR metabolic profiling and phenotypic analyses of thirteen RNAi and/or null mutants affecting central carbon metabolism. We showed that (i) malate is converted to succinate by both the reducing and oxidative branches of the TCA cycle, which demonstrates that procyclic trypanosomes can use the full TCA cycle, (ii) the enormous rate of α-ketoglutarate consumption (15-times higher than glucose) is possible thanks to the balanced production and consumption of NADH at the substrate level and (iii) α-ketoglutarate is toxic for trypanosomes if not appropriately metabolized as observed for an α-ketoglutarate dehydrogenase null mutant. In addition, epimastigotes produced from procyclics upon overexpression of RBP6 showed a growth defect in the presence of 2 mM proline, which is rescued by α-ketoglutarate, suggesting that physiological amounts of proline are not sufficient per se for the development of trypanosomes in the fly. In conclusion, these data show that trypanosomes can metabolize multiple metabolites, in addition to proline, which allows them to confront challenging environments in the fly.


Asunto(s)
Glucosa/metabolismo , Prolina/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma/efectos de los fármacos , Moscas Tse-Tse/efectos de los fármacos , Animales , Ciclo del Ácido Cítrico/efectos de los fármacos , Insectos Vectores/parasitología , Oxidación-Reducción/efectos de los fármacos , Prolina/metabolismo , Interferencia de ARN/fisiología , Trypanosoma/metabolismo , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/tratamiento farmacológico , Moscas Tse-Tse/parasitología
3.
PLoS Pathog ; 14(12): e1007502, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30557412

RESUMEN

In the glucose-free environment that is the midgut of the tsetse fly vector, the procyclic form of Trypanosoma brucei primarily uses proline to feed its central carbon and energy metabolism. In these conditions, the parasite needs to produce glucose 6-phosphate (G6P) through gluconeogenesis from metabolism of non-glycolytic carbon source(s). We showed here that two phosphoenolpyruvate-producing enzymes, PEP carboxykinase (PEPCK) and pyruvate phosphate dikinase (PPDK) have a redundant function for the essential gluconeogenesis from proline. Indeed, incorporation of 13C-enriched proline into G6P was abolished in the PEPCK/PPDK null double mutant (Δppdk/Δpepck), but not in the single Δppdk and Δpepck mutant cell lines. The procyclic trypanosome also uses the glycerol conversion pathway to feed gluconeogenesis, since the death of the Δppdk/Δpepck double null mutant in glucose-free conditions is only observed after RNAi-mediated down-regulation of the expression of the glycerol kinase, the first enzyme of the glycerol conversion pathways. Deletion of the gene encoding fructose-1,6-bisphosphatase (Δfbpase), a key gluconeogenic enzyme irreversibly producing fructose 6-phosphate from fructose 1,6-bisphosphate, considerably reduced, but not abolished, incorporation of 13C-enriched proline into G6P. In addition, the Δfbpase cell line is viable in glucose-free conditions, suggesting that an alternative pathway can be used for G6P production in vitro. However, FBPase is essential in vivo, as shown by the incapacity of the Δfbpase null mutant to colonise the fly vector salivary glands, while the parental phenotype is restored in the Δfbpase rescued cell line re-expressing FBPase. The essential role of FBPase for the development of T. brucei in the tsetse was confirmed by taking advantage of an in vitro differentiation assay based on the RNA-binding protein 6 over-expression, in which the procyclic forms differentiate into epimastigote forms but not into mammalian-infective metacyclic parasites. In total, morphology, immunofluorescence and cytometry analyses showed that the differentiation of the epimastigote stages into the metacyclic forms is abolished in the Δfbpase mutant.


Asunto(s)
Gluconeogénesis/fisiología , Trypanosoma brucei brucei/metabolismo , Moscas Tse-Tse/parasitología , Animales , Vectores de Enfermedades , Tripanosomiasis Africana
4.
PLoS Pathog ; 14(11): e1007412, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30383867

RESUMEN

The bloodstream forms of Trypanosoma brucei (BSF), the parasite protist causing sleeping sickness, primarily proliferate in the blood of their mammalian hosts. The skin and adipose tissues were recently identified as additional major sites for parasite development. Glucose was the only carbon source known to be used by bloodstream trypanosomes to feed their central carbon metabolism, however, the metabolic behaviour of extravascular tissue-adapted parasites has not been addressed yet. Since the production of glycerol is an important primary function of adipocytes, we have adapted BSF trypanosomes to a glucose-depleted but glycerol-rich culture medium (CMM_Glyc/GlcNAc) and compared their metabolism and proteome to those of parasites grown in standard glucose-rich conditions (CMM_Glc). BSF were shown to consume 2-folds more oxygen per consumed carbon unit in CMM_Glyc/GlcNAc and were 11.5-times more sensitive to SHAM, a specific inhibitor of the plant-like alternative oxidase (TAO), which is the only mitochondrial terminal oxidase expressed in BSF. This is consistent with (i) the absolute requirement of the mitochondrial respiratory activity to convert glycerol into dihydroxyacetone phosphate, as deduced from the updated metabolic scheme and (ii) with the 1.8-fold increase of the TAO expression level compared to the presence of glucose. Proton NMR analysis of excreted end products from glycerol and glucose metabolism showed that these two carbon sources are metabolised through the same pathways, although the contributions of the acetate and succinate branches are more important in the presence of glycerol than glucose (10.2% versus 3.4% of the excreted end products, respectively). In addition, metabolomic analyses by mass spectrometry showed that, in the absence of glucose, 13C-labelled glycerol was incorporated into hexose phosphates through gluconeogenesis. As expected, RNAi-mediated down-regulation of glycerol kinase expression abolished glycerol metabolism and was lethal for BSF grown in CMM_Glyc/GlcNAc. Interestingly, BSF have adapted their metabolism to grow in CMM_Glyc/GlcNAc by concomitantly increasing their rate of glycerol consumption and decreasing that of glucose. However, the glycerol kinase activity was 7.8-fold lower in CMM_Glyc/GlcNAc, as confirmed by both western blotting and proteomic analyses. This suggests that the huge excess in glycerol kinase that is not absolutely required for glycerol metabolism, might be used for another yet undetermined non-essential function in glucose rich-conditions. Altogether, these data demonstrate that BSF trypanosomes are well-adapted to glycerol-rich conditions that could be encountered by the parasite in extravascular niches, such as the skin and adipose tissues.


Asunto(s)
Glicerol/metabolismo , Trypanosoma brucei brucei/metabolismo , Tejido Adiposo/metabolismo , Línea Celular/metabolismo , Medios de Cultivo/química , Gluconeogénesis , Glucosa/metabolismo , Glucólisis , Metabolómica , Mitocondrias/metabolismo , Ácido Succínico/metabolismo , Espectrometría de Masas en Tándem/métodos , Trypanosoma brucei brucei/patogenicidad
5.
PLoS Pathog ; 14(5): e1007116, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29813135

RESUMEN

De novo biosynthesis of lipids is essential for Trypanosoma brucei, a protist responsible for the sleeping sickness. Here, we demonstrate that the ketogenic carbon sources, threonine, acetate and glucose, are precursors for both fatty acid and sterol synthesis, while leucine only contributes to sterol production in the tsetse fly midgut stage of the parasite. Degradation of these carbon sources into lipids was investigated using a combination of reverse genetics and analysis of radio-labelled precursors incorporation into lipids. For instance, (i) deletion of the gene encoding isovaleryl-CoA dehydrogenase, involved in the leucine degradation pathway, abolished leucine incorporation into sterols, and (ii) RNAi-mediated down-regulation of the SCP2-thiolase gene expression abolished incorporation of the three ketogenic carbon sources into sterols. The SCP2-thiolase is part of a unidirectional two-step bridge between the fatty acid precursor, acetyl-CoA, and the precursor of the mevalonate pathway leading to sterol biosynthesis, 3-hydroxy-3-methylglutaryl-CoA. Metabolic flux through this bridge is increased either in the isovaleryl-CoA dehydrogenase null mutant or when the degradation of the ketogenic carbon sources is affected. We also observed a preference for fatty acids synthesis from ketogenic carbon sources, since blocking acetyl-CoA production from both glucose and threonine abolished acetate incorporation into sterols, while incorporation of acetate into fatty acids was increased. Interestingly, the growth of the isovaleryl-CoA dehydrogenase null mutant, but not that of the parental cells, is interrupted in the absence of ketogenic carbon sources, including lipids, which demonstrates the essential role of the mevalonate pathway. We concluded that procyclic trypanosomes have a strong preference for fatty acid versus sterol biosynthesis from ketogenic carbon sources, and as a consequence, that leucine is likely to be the main source, if not the only one, used by trypanosomes in the infected insect vector digestive tract to feed the mevalonate pathway.


Asunto(s)
Carbono/metabolismo , Ácidos Grasos/biosíntesis , Esteroles/biosíntesis , Trypanosoma brucei brucei/metabolismo , Acetatos/metabolismo , Acetilcoenzima A/metabolismo , Acetiltransferasas/metabolismo , Acilcoenzima A/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Animales , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Glucosa/metabolismo , Insectos Vectores/parasitología , Leucina/metabolismo , Ácido Mevalónico/metabolismo , Prolina/metabolismo , Treonina/metabolismo , Trypanosoma brucei brucei/genética , Moscas Tse-Tse/parasitología
6.
Protein Expr Purif ; 138: 56-62, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28642005

RESUMEN

Isocitrate dehydrogenases (IDHs) are metabolic enzymes that catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate. Depending on the electron acceptor and subcellular localization, these enzymes are classified as NADP+-dependent IDH1 in the cytosol or peroxisomes, NADP+-dependent IDH2 and NAD+-dependent IDH3 in mitochondria. Trypanosoma brucei is a protozoan parasite that causes African sleeping sickness in humans and Nagana disease in animals. Here, for the first time, a putative glycosomal T. brucei type 1 IDH (TbIDH1) was expressed in Escherichia coli and purified for crystallographic study. Surprisingly, the putative NADP+-dependent TbIDH1 has higher activity with NAD+ compared with NADP+ as electron acceptor, a unique characteristic among known eukaryotic IDHs which encouraged us to crystallize TbIDH1 for future biochemical and structural studies. Methods of expression and purification of large amounts of recombinant TbIDH1 with improved solubility to facilitate protein crystallization are presented.


Asunto(s)
Isocitrato Deshidrogenasa/genética , NADP/metabolismo , NAD/metabolismo , Proteínas Protozoarias/genética , Proteínas Recombinantes de Fusión/genética , Trypanosoma brucei brucei/química , Secuencia de Aminoácidos , Clonación Molecular , Cristalización , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Isocitrato Deshidrogenasa/aislamiento & purificación , Isocitrato Deshidrogenasa/metabolismo , Isocitratos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Peso Molecular , Proteínas Protozoarias/aislamiento & purificación , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Trypanosoma brucei brucei/enzimología
7.
Int J Biochem Cell Biol ; 85: 85-90, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28179189

RESUMEN

Peroxisomes are single-membrane cellular organelles, present in most eukaryotic cells and organisms from human to yeast, fulfilling essential metabolic functions in lipid metabolism, free radical detoxification, differentiation, development, morphogenesis, etc. Interestingly, the protozoan parasite species Trypanosoma contains peroxisome-like organelles named glycosomes, which lack hallmark peroxisomal pathways and enzymes, such as catalase. Glycosomes are the only peroxisome-like organelles containing most enzymatic steps of the glycolytic pathway as well as enzymes of pyrimidine biosynthesis, purine salvage and biosynthesis of nucleotide sugars. We present here an overview of the glycosomal metabolic peculiarities together with the current view of the raison d'être of this unique metabolic peroxisomal sequestration.


Asunto(s)
Microcuerpos/metabolismo , Trypanosoma brucei brucei/metabolismo , Animales , Glucólisis , Humanos , Modelos Biológicos , Transducción de Señal
8.
Mol Microbiol ; 96(5): 917-26, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25753950

RESUMEN

Numerous eukaryotes have developed specific metabolic traits that are not present in extensively studied model organisms. For instance, the procyclic insect form of Trypanosoma brucei, a parasite responsible for sleeping sickness in its mammalian-specific bloodstream form, metabolizes glucose into excreted succinate and acetate through pathways with unique features. Succinate is primarily produced from glucose-derived phosphoenolpyruvate in peroxisome-like organelles, also known as glycosomes, by a soluble NADH-dependent fumarate reductase only described in trypanosomes so far. Acetate is produced in the mitochondrion of the parasite from acetyl-CoA by a CoA-transferase, which forms an ATP-producing cycle with succinyl-CoA synthetase. The role of this cycle in ATP production was recently demonstrated in procyclic trypanosomes and has only been proposed so far for anaerobic organisms, in addition to trypanosomatids. We review how nuclear magnetic resonance spectrometry can be used to analyze the metabolic network perturbed by deletion (knockout) or downregulation (RNAi) of the candidate genes involved in these two particular metabolic pathways of procyclic trypanosomes. The role of succinate and acetate production in trypanosomes is discussed, as well as the connections between the succinate and acetate branches, which increase the metabolic flexibility probably required by the parasite to deal with environmental changes such as oxidative stress.


Asunto(s)
Espectroscopía de Resonancia Magnética , Redes y Vías Metabólicas , Metabolómica , Genética Inversa , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Acetatos/metabolismo , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Acilcoenzima A/genética , Acilcoenzima A/metabolismo , Animales , Técnicas de Inactivación de Genes , Glucosa/metabolismo , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/fisiología , Metabolómica/métodos , Mitocondrias/genética , Mitocondrias/metabolismo , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Interferencia de ARN , Ácido Succínico/metabolismo , Trypanosoma brucei brucei/crecimiento & desarrollo
9.
PLoS One ; 9(12): e114628, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25493940

RESUMEN

Carbon storage is likely to enable adaptation of trypanosomes to nutritional challenges or bottlenecks during their stage development and migration in the tsetse. Lipid droplets are candidates for this function. This report shows that feeding of T. brucei with oleate results in a 4-5 fold increase in the number of lipid droplets, as quantified by confocal fluorescence microscopy and by flow cytometry of BODIPY 493/503-stained cells. The triacylglycerol (TAG) content also increased 4-5 fold, and labeled oleate is incorporated into TAG. Fatty acid carbon can thus be stored as TAG in lipid droplets under physiological growth conditions in procyclic T. brucei. ß-oxidation has been suggested as a possible catabolic pathway for lipids in T. brucei. A single candidate gene, TFEα1 with coding capacity for a subunit of the trifunctional enzyme complex was identified. TFEα1 is expressed in procyclic T. brucei and present in glycosomal proteomes, Unexpectedly, a TFEα1 gene knock-out mutant still expressed wild-type levels of previously reported NADP-dependent 3-hydroxyacyl-CoA dehydrogenase activity, and therefore, another gene encodes this enzymatic activity. Homozygous Δtfeα1/Δtfeα1 null mutant cells show a normal growth rate and an unchanged glycosomal proteome in procyclic T. brucei. The decay kinetics of accumulated lipid droplets upon oleate withdrawal can be fully accounted for by the dilution effect of cell division in wild-type and Δtfeα1/Δtfeα1 cells. The absence of net catabolism of stored TAG in procyclic T. brucei, even under strictly glucose-free conditions, does not formally exclude a flux through TAG, in which biosynthesis equals catabolism. Also, the possibility remains that TAG catabolism is completely repressed by other carbon sources in culture media or developmentally activated in post-procyclic stages in the tsetse.


Asunto(s)
Triglicéridos/metabolismo , Trypanosoma brucei brucei/metabolismo , Southern Blotting , Citometría de Flujo , Genes Protozoarios/genética , Genes Protozoarios/fisiología , Metabolismo de los Lípidos , Microscopía Confocal , Microscopía Fluorescente , Ácido Oléico/metabolismo , Filogenia , Trypanosoma brucei brucei/genética
10.
J Biol Chem ; 288(25): 18494-505, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23665470

RESUMEN

All living organisms depend on NADPH production to feed essential biosyntheses and for oxidative stress defense. Protozoan parasites such as the sleeping sickness pathogen Trypanosoma brucei adapt to different host environments, carbon sources, and oxidative stresses during their infectious life cycle. The procyclic stage develops in the midgut of the tsetse insect vector, where they rely on proline as carbon source, although they prefer glucose when grown in rich media. Here, we investigate the flexible and carbon source-dependent use of NADPH synthesis pathways in the cytosol of the procyclic stage. The T. brucei genome encodes two cytosolic NADPH-producing pathways, the pentose phosphate pathway (PPP) and the NADP-dependent malic enzyme (MEc). Reverse genetic blocking of those pathways and a specific inhibitor (dehydroepiandrosterone) of glucose-6-phosphate dehydrogenase together established redundancy with respect to H2O2 stress management and parasite growth. Blocking both pathways resulted in ∼10-fold increase of susceptibility to H2O2 stress and cell death. Unexpectedly, the same pathway redundancy was observed in glucose-rich and glucose-depleted conditions, suggesting that gluconeogenesis can feed the PPP to provide NADPH. This was confirmed by (i) a lethal phenotype of RNAi-mediated depletion of glucose-6-phosphate isomerase (PGI) in the glucose-depleted Δmec/Δmec null background, (ii) an ∼10-fold increase of susceptibility to H2O2 stress observed for the Δmec/Δmec/(RNAi)PGI double mutant when compared with the single mutants, and (iii) the (13)C enrichment of glycolytic and PPP intermediates from cells incubated with [U-(13)C]proline, in the absence of glucose. Gluconeogenesis-supported NADPH supply may also be important for nucleotide and glycoconjugate syntheses in the insect host.


Asunto(s)
Glucosa/metabolismo , Malato Deshidrogenasa/metabolismo , NADP/metabolismo , Vía de Pentosa Fosfato/fisiología , Trypanosoma brucei brucei/metabolismo , Animales , Western Blotting , Células Cultivadas , Citosol/metabolismo , Deshidroepiandrosterona/farmacología , Gluconeogénesis/efectos de los fármacos , Gluconeogénesis/genética , Gluconeogénesis/fisiología , Glucosa-6-Fosfato Isomerasa/genética , Glucosa-6-Fosfato Isomerasa/metabolismo , Glucosafosfato Deshidrogenasa/antagonistas & inhibidores , Glucosafosfato Deshidrogenasa/metabolismo , Homeostasis , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Malato Deshidrogenasa/genética , Espectrometría de Masas , Vía de Pentosa Fosfato/genética , Interferencia de ARN , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crecimiento & desarrollo , Moscas Tse-Tse/parasitología
11.
Proc Natl Acad Sci U S A ; 106(31): 12694-9, 2009 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-19625628

RESUMEN

Acetyl-CoA produced in mitochondria from carbohydrate or amino acid catabolism needs to reach the cytosol to initiate de novo synthesis of fatty acids. All eukaryotes analyzed so far use a citrate/malate shuttle to transfer acetyl group equivalents from the mitochondrial matrix to the cytosol. Here we investigate how this acetyl group transfer occurs in the procyclic life cycle stage of Trypanosoma brucei, a protozoan parasite responsible of human sleeping sickness and economically important livestock diseases. Deletion of the potential citrate lyase gene, a critical cytosolic enzyme of the citrate/malate shuttle, has no effect on de novo biosynthesis of fatty acids from (14)C-labeled glucose, indicating that another route is used for acetyl group transfer. Because acetate is produced from acetyl-CoA in the mitochondrion of this parasite, we considered genes encoding cytosolic enzymes producing acetyl-CoA from acetate. We identified an acetyl-CoA synthetase gene encoding a cytosolic enzyme (AceCS), which is essential for cell viability. Repression of AceCS by inducible RNAi results in a 20-fold reduction of (14)C-incorporation from radiolabeled glucose or acetate into de novo synthesized fatty acids. Thus, we demonstrate that the essential cytosolic enzyme AceCS of T. brucei is responsible for activation of acetate into acetyl-CoA to feed de novo biosynthesis of lipids. To date, Trypanosoma is the only known eukaryotic organism that uses acetate instead of citrate to transfer acetyl groups over the mitochondrial membrane for cytosolic lipid synthesis.


Asunto(s)
Acetatos/metabolismo , Lípidos/biosíntesis , Mitocondrias/metabolismo , Trypanosoma brucei brucei/metabolismo , Acetato CoA Ligasa/antagonistas & inhibidores , Acetato CoA Ligasa/genética , Acetato CoA Ligasa/fisiología , Acetilcoenzima A/metabolismo , Animales , Ácido Cítrico/metabolismo , Malatos/metabolismo , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/fisiología , Oxo-Ácido-Liasas/genética , Oxo-Ácido-Liasas/fisiología , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA