Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS Pathog ; 19(1): e1011117, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36719928

RESUMEN

Aedes aegypti mosquitoes carrying self-spreading, virus-blocking Wolbachia bacteria are being deployed to suppress dengue transmission. However, there are challenges in applying this technology in extreme environments. We introduced two Wolbachia strains into Ae. aegypti from Saudi Arabia for a release program in the hot coastal city of Jeddah. Wolbachia reduced infection and dissemination of dengue virus (DENV2) in Saudi Arabian mosquitoes and showed complete maternal transmission and cytoplasmic incompatibility. Wolbachia reduced egg hatch under a range of environmental conditions, with the Wolbachia strains showing differential thermal stability. Wolbachia effects were similar across mosquito genetic backgrounds but we found evidence of local adaptation, with Saudi Arabian mosquitoes having lower egg viability but higher adult desiccation tolerance than Australian mosquitoes. Genetic background effects will influence Wolbachia invasion dynamics, reinforcing the need to use local genotypes for mosquito release programs, particularly in extreme environments like Jeddah. Our comprehensive characterization of Wolbachia strains provides a foundation for Wolbachia-based disease interventions in harsh climates.


Asunto(s)
Aedes , Dengue , Wolbachia , Animales , Arabia Saudita , Australia , Ambientes Extremos
2.
iScience ; 25(11): 105344, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36325069

RESUMEN

At nanoconfined interfaces, a micellar ink of lipids was programmed to transform into various secondary structures such as discs, sheets, or sheet and discs via patterning-mediated self-assembly facilitated by polymer pen lithography. Nanoconfinement with printing force, humidity, temperature, pattern size, and total printing time all governed the intramolecular assembly of lipids and determined their structural shape and size. For example, disc or sheet architectures self-organized to produce cochleates or discotic liquid crystals, respectively. In contrast, the combined structure of sheet and discs produced a novel supramolecular output referred to as "nanopalms". The mechanism of nanopalms formation and the origin of their stability were investigated and discussed. Post patterning treatment helped to transform the patterned discs into ribbons and sheets into cochleates that could facilitate the curling of ribbons along their folding direction in a programmed manner via intermolecular self-organization producing the nanopalms.

3.
Insects ; 13(10)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36292897

RESUMEN

Releases of Aedes aegypti carrying Wolbachia bacteria are known to suppress arbovirus transmission and reduce the incidence of vector-borne diseases. In planning for Wolbachia releases in the arid environment of Jeddah, Saudi Arabia, we collected entomological data with ovitraps across a 7-month period in four locations. Herein, we show that mosquito presence in basements does not differ from that of non-basement areas of buildings. In modelling mosquito presence across the study sites, we found the spatial structure to be statistically significant in one of the four sites, while a significant spatial structure was found for egg production data across three of the four sites. The length scales of the spatial covariance functions fitted to the egg production data ranged from 143 m to 574 m, indicating that high productivity regions can be extensive in size. Rank-correlation analyses indicated that mosquito presence tended to persist from the dry to wet season, but that egg production ranks at locations could reverse. The data suggest that, in Jeddah, the quality of the local environment for breeding can vary over time. The data support the feasibility of dry season releases but with release numbers needing to be flexible depending on local rates of invasion.

4.
Nanoscale Adv ; 4(5): 1336-1344, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36133681

RESUMEN

Oxidative chemical etching of metal nanoparticles (NPs) to produce holey graphene (hG) suffers from the presence of aggregated NPs on the graphene surface triggering heterogeneous etching rates and thereby producing irregular sized holes. To encounter such a challenge, we investigated the use of scanning probe block co-polymer lithography (SPBCL) to fabricate precisely positioned silver nanoparticles (AgNPs) on graphene surfaces with exquisite control over the NP size to prevent their aggregation and consequently produce uniformly distributed holes after oxidative chemical etching. SPBCL experiments were carried out via printing an ink suspension consisting of poly(ethylene oxide-b-2-vinylpyridine) and silver nitrate on a graphene surface in a selected pattern under controlled environmental and instrumental parameters followed by thermal annealing in a gaseous environment to fabricate AgNPs. Scanning electron microscopy revealed the uniform size distribution of AgNPs on the graphene surface with minimal to no aggregation. Four main sizes of AgNPs were obtained (37 ± 3, 45 ± 3, 54 ± 2, and 64 ± 3 nm) via controlling the printing force, z-piezo extension, and dwell time. Energy dispersive X-ray spectroscopy analysis validated the existence of elemental Ag on the graphene surface. Subsequent chemical etching of AgNPs using nitric acid (HNO3) with the aid of sonication and mechanical agitation produced holes of uniform size distribution generating hG. The obtained I D/I G ratios ≤ 0.96 measured by Raman spectroscopy were lower than those commonly reported for GO (I D/I G > 1), indicating the removal of more defective C atoms during the etching process to produce hG while preserving the remaining C atoms in ordered or crystalline structures. Indeed, SPBCL could be utilized to fabricate uniformly distributed AgNPs of controlled sizes on graphene surfaces to ultimately produce hG of uniform hole size distribution.

5.
Saudi Pharm J ; 30(1): 28-38, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35145343

RESUMEN

Local production of pharmaceuticals plays a vital role in maintaining resilience of national healthcare systems, especially when it comes to facilitating access to needed medicines and decreasing exposure to imports and international supply chains. Pharma is a research-intensive industry and the systemic lack of governance and support to R&D activities in this sector, among other host of related issues such as unsupportive regulatory regimes and human resources capacity limitations, is one of the major impediments to the diversifying of locally produced pharmaceuticals portfolio. In this review, an overview of the current pharmaceutical production system in Saudi Arabia, its major challenges, and proposed remedies to address them will be highlighted.

6.
Immunotherapy ; 13(14): 1215-1229, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34498496

RESUMEN

Over recent years, tremendous advances in immunotherapy approaches have been observed, generating significant clinical progress. Cancer immunotherapy has been shown, in different types of blood cancers, to improve the overall survival of patients. Immunotherapy treatment of hematopoietic malignancies is a newly growing field that has been accelerating over the past years. Several US FDA approved drugs and cell-based therapies are being exploited in the late stage of clinical trials. This review attempt to highlight and discuss the numerous innovative immunotherapy approaches of hematopoietic malignancy ranging from nonmyeloablative transplantation, T-cell immunotherapy, natural killer cells and immune agonist to monoclonal antibodies and vaccination. In addition, a brief discussion on the future advances and accomplishments required to counterpart the current immunotherapeutic approaches for hematopoietic malignancies were also highlighted.


Asunto(s)
Neoplasias Hematológicas/terapia , Inmunoterapia/métodos , Inmunoterapia/tendencias , Humanos
7.
Cancers (Basel) ; 13(12)2021 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-34203051

RESUMEN

High-grade serous ovarian cancer (HGSOC) is the most lethal gynecological malignancy among women. Several obstacles impede the early diagnosis and effective treatment options for ovarian cancer (OC) patients, which most importantly include the development of platinum-drug-resistant strains. Currently, extensive efforts are being put into the development of strategies capable of effectively circumventing the physical and biological barriers present in the peritoneal cavity of metastatic OC patients, representing a late stage of gastrointestinal and gynecological cancer with an extremely poor prognosis. Naturally occurring extracellular vesicles (EVs) have been shown to play a pivotal role in progression of OC and are now being harnessed as a delivery vehicle for cancer chemotherapeutics. However, there are limitations to their clinical application due to current challenges in their preparation techniques. Intriguingly, there is a recent drive towards the use of engineered synthetic EVs for the delivery of chemotherapeutics and RNA interference therapy (RNAi), as they show the promise of overcoming the obstacles in the treatment of OC patients. This review discusses the therapeutic application of EVs in OC and elucidates the potential use of engineered EV-mimetic nanoparticles as a delivery vehicle for RNAi therapy and other chemotherapeutics, which would potentially improve clinical outcomes of OC patients.

8.
Molecules ; 26(9)2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34064416

RESUMEN

The objective of this study was to synthesize and characterize a set of biodegradable block copolymers based on TPGS-block-poly(ε-caprolactone) (TPGS-b-PCL) and to assess their self-assembled structures as a nanodelivery system for paclitaxel (PAX). The conjugation of PCL to TPGS was hypothesized to increase the stability and the drug solubilization characteristics of TPGS micelles. TPGS-b-PCL copolymer with various PCL/TPGS ratios were synthesized via ring opening bulk polymerization of ε-caprolactone using TPGS, with different molecular weights of PEG (1-5 kDa), as initiators and stannous octoate as a catalyst. The synthesized copolymers were characterized using 1H NMR, GPC, FTIR, XRD, and DSC. Assembly of block copolymers was achieved via the cosolvent evaporation method. The self-assembled structures were characterized for their size, polydispersity, and CMC using dynamic light scattering (DLS) technique. The results from the spectroscopic and thermal analyses confirmed the successful synthesis of the copolymers. Only copolymers that consisted of TPGS with PEG molecular weights ≥ 2000 Da were able to self-assemble and form nanocarriers of ≤200 nm in diameter. Moreover, TPGS2000-b-PCL4000, TPGS3500-b-PCL7000, and TPGS5000-b-PCL15000 micelles enhanced the aqueous solubility of PAX from 0.3 µg/mL up to 88.4 ug/mL in TPGS5000-b-PCL15000. Of the abovementioned micellar formulations, TPGS5000-b-PCL15000 showed the slowest in vitro release of PAX. Specifically, the PAX-loaded TPGS5000-b-PCL15000 micellar formulation showed less than 10% drug release within the first 12 h, and around 36% cumulative drug release within 72 h compared to 61% and 100% PAX release, respectively, from the commercially available formulation (Ebetaxel®) at the same time points. Our results point to a great potential for TPGS-b-PCL micelles to efficiently solubilize and control the release of PAX.


Asunto(s)
Portadores de Fármacos/química , Nanopartículas/química , Paclitaxel/farmacología , Poliésteres/química , Vitamina E/química , Rastreo Diferencial de Calorimetría , Cromatografía en Gel , Preparaciones de Acción Retardada , Liberación de Fármacos , Micelas , Nanopartículas/ultraestructura , Tamaño de la Partícula , Poliésteres/síntesis química , Espectroscopía de Protones por Resonancia Magnética , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Vitamina E/síntesis química , Agua/química , Difracción de Rayos X
9.
Mol Pharm ; 16(8): 3577-3587, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31291120

RESUMEN

Engineered superparamagnetic iron oxide nanoparticles (SPIONs) have been studied extensively for their localized homogeneous heat generation in breast cancer therapy. However, challenges such as aggregation and inability to produce sub-10 nm SPIONs limit their potential in magnetothermal ablation. We report a facile, efficient, and robust in situ method for the synthesis of SPIONs within a poly(ethylene glycol) (PEG) reactor adsorbed onto reduced graphene oxide nanosheets (rGO) via the microwave hydrothermal route. This promising modality yields crystalline, stable, biocompatible, and superparamagnetic PEGylated SPION-rGO nanocomposites (NCs) with uniform dispersibility. Our findings show that rGO acts as a breeding ground for the spatially distributed nanosites around which the ferrihydrite seeds accumulate to ultimately transform into immobilized SPIONs. PEG, in parallel, acts as a critical confining agent physically trapping the accumulated seeds to prevent their aggregation and create multiple domains on rGO for the synthesis of quantum-sized SPIONs (9 ± 1 nm in diameter). This dual functionality (rGO and PEG) exhibits a pronounced effect on reducing both the aggregation and the sizes of fabricated SPIONs as confirmed by the scanning transmission electron microscopy images, dynamic light scattering analyses, and the specific absorption rates (SARs). Reduced aggregation lowered the toxicity of NCs, where PEGylated SPION-rGO NCs are more biocompatible than PEGylated SPIONs, showing no significant induction of cell apoptosis, mitochondrial membrane injury, or oxidative stress. Significantly less lactate dehydrogenase release and hence less necrosis are observed after 48 h exposure to high doses of PEGylated SPION-rGO NCs compared with PEGylated SPIONs. NCs induce local heat generation with a SAR value of 1760 ± 97 W/g, reaching up to 43 ± 0.3 °C and causing significant MCF-7 breast tumor cell ablation of about 78 ± 10% upon applying an external magnetic field. Collectively, rGO and PEG functionalities have a synergistic effect on improving the synthesis, stability, biocompatibility, and magnetothermal properties of SPIONs.


Asunto(s)
Neoplasias de la Mama/terapia , Técnicas de Química Sintética/instrumentación , Química Farmacéutica/instrumentación , Nanopartículas de Magnetita/química , Nanocompuestos/química , Técnicas de Química Sintética/métodos , Química Farmacéutica/métodos , Dispersión Dinámica de Luz , Femenino , Grafito/química , Humanos , Hipertermia Inducida/instrumentación , Hipertermia Inducida/métodos , Células MCF-7 , Magnetoterapia/instrumentación , Magnetoterapia/métodos , Nanopartículas de Magnetita/uso terapéutico , Nanopartículas de Magnetita/ultraestructura , Ensayo de Materiales , Microscopía Electrónica de Transmisión de Rastreo , Nanocompuestos/uso terapéutico , Nanocompuestos/ultraestructura , Tamaño de la Partícula , Polietilenglicoles/química
10.
Case Rep Dent ; 2018: 7084245, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30002934

RESUMEN

Endodontic-periodontal diseases often present great challenges to the clinician in their diagnosis, management, and prognosis. Understanding the disease process through cause-and-effect relationships between the pulp and supporting periodontal tissues with the aid of rational classifications leads to successful treatment outcomes. In this report, we present several treatment modalities in patients with different endodontic-periodontal lesions. A modification to the new endodontic-periodontic classification, Al-Fouzan's classification, was also added. The first case was classified as retrograde periodontal disease (i.e., primary endodontic lesion with drainage through the periodontal ligament). The second case was diagnosed as an iatrogenic periodontal lesion caused by root perforation. The third case was diagnosed as an iatrogenic periodontal lesion caused by tooth trauma due to orthodontic treatment. The first two cases were managed with a nonsurgical approach, whereas the third case was managed with nonsurgical and surgical approaches. All patients showed complete healing of soft and hard tissue lesions. A thorough understanding of the disease history and the patient's signs and symptoms, complete examination with full investigation, and the use of a systematic step-by-step approach in the management of such challenging endodontic-periodontal lesions with regular recall visits were very useful and successful.

11.
J Control Release ; 229: 183-191, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27016140

RESUMEN

Functional nanocarriers capable of transporting high drug contents without premature leakage and to controllably deliver several drugs are needed for better cancer treatments. To address this clinical need, gold cluster bovine serum albumin (AuNC@BSA) nanogates were engineered on mesoporous silica nanoparticles (MSN) for high drug loadings and co-delivery of two different anticancer drugs. The first drug, gemcitabine (GEM, 40wt%), was loaded in positively-charged ammonium-functionalized MSN (MSN-NH3(+)). The second drug, doxorubicin (DOX, 32wt%), was bound with negatively-charged AuNC@BSA electrostatically-attached onto MSN-NH3(+), affording highly loaded pH-responsive MSN-AuNC@BSA nanocarriers. The co-delivery of DOX and GEM was achieved for the first time via an inorganic nanocarrier, possessing a zero-premature leakage behavior as well as drug loading capacities seven times higher than polymersome NPs. Besides, unlike the majority of strategies used to cap the pores of MSN, AuNC@BSA nanogates are biotools and were applied for targeted red nuclear staining and in-vivo tumor imaging. The straightforward non-covalent combination of MSN and gold-protein cluster bioconjugates thus leads to a simple, yet multifunctional nanotheranostic for the next generation of cancer treatments.


Asunto(s)
Portadores de Fármacos/administración & dosificación , Oro/administración & dosificación , Nanocompuestos/administración & dosificación , Nanopartículas/administración & dosificación , Albúmina Sérica Bovina/administración & dosificación , Dióxido de Silicio/administración & dosificación , Células A549 , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Línea Celular , Desoxicitidina/administración & dosificación , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Portadores de Fármacos/química , Liberación de Fármacos , Oro/química , Humanos , Nanocompuestos/química , Nanopartículas/química , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Porosidad , Albúmina Sérica Bovina/química , Dióxido de Silicio/química , Gemcitabina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA