Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 319
Filtrar
1.
medRxiv ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39399003

RESUMEN

Importance: Functional brain networks are associated with both behavior and genetic factors. To uncover clinically translatable mechanisms of psychopathology, it is critical to define how the spatial organization of these networks relates to genetic risk during development. Objective: To determine the relationship between transdiagnostic polygenic risk scores (PRSs), personalized functional brain networks (PFNs), and overall psychopathology (p-factor) during early adolescence. Design: The Adolescent Brain Cognitive Development (ABCD) Study is an ongoing longitudinal cohort study of 21 collection sites across the United States. Here, we conduct a cross-sectional analysis of ABCD baseline data, collected 2017-2018. Setting: The ABCD Study ® is a multi-site community-based study. Participants: The sample is largely recruited through school systems. Exclusion criteria included severe sensory, intellectual, medical, or neurological issues that interfere with protocol and scanner contraindications. Split-half subsets were used for cross-validation, matched on age, ethnicity, family structure, handedness, parental education, site, sex, and anesthesia exposure. Exposures: Polygenic risk scores of transdiagnostic genetic factors F1 (PRS-F1) and F2 (PRS-F2) derived from adults in Psychiatric Genomic Consortium and UK Biobanks datasets. PRS-F1 indexes liability for common psychiatric symptoms and disorders related to mood disturbance; PRS-F2 indexes liability for rarer forms of mental illness characterized by mania and psychosis. Main Outcomes and Measures: (1) P-factor derived from bifactor models of youth- and parent-reported mental health assessments. (2) Person-specific functional brain network topography derived from functional magnetic resonance imaging (fMRI) scans. Results: Total participants included 11,873 youths ages 9-10 years old; 5,678 (47.8%) were female, and the mean (SD) age was 9.92 (0.62) years. PFN topography was found to be heritable (N=7,459, 57.06% of vertices h 2 p FDR <0.05, mean h 2 =0.35). PRS-F1 was associated with p-factor (N=5,815, r=0.12, 95% CI [0.09-0.15], p<0.001). Interindividual differences in functional network topography were associated with p-factor (N=7,459, mean r=0.12), PRS-F1 (N=3,982, mean r=0.05), and PRS-F2 (N=3,982, mean r=0.08). Cortical maps of p-factor and PRS-F1 regression coefficients were highly correlated (r=0.7, p=0.003). Conclusions and Relevance: Polygenic risk for transdiagnostic adulthood psychopathology is associated with both p-factor and heritable PFN topography during early adolescence. These results advance our understanding of the developmental drivers of psychopathology.

2.
bioRxiv ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39386531

RESUMEN

Non-coding variants discovered by genome-wide association studies (GWAS) are enriched in regulatory elements harboring transcription factor (TF) binding motifs, strongly suggesting a connection between disease association and the disruption of cis-regulatory sequences. Occupancy of a TF inside a region of open chromatin can be detected in ATAC-seq where bound TFs block the transposase Tn5, leaving a pattern of relatively depleted Tn5 insertions known as a "footprint". Here, we sought to identify variants associated with TF-binding, or "footprint quantitative trait loci" (fpQTLs) in ATAC-seq data generated from 170 human liver samples. We used computational tools to scan the ATAC-seq reads to quantify TF binding likelihood as "footprint scores" at variants derived from whole genome sequencing generated in the same samples. We tested for association between genotype and footprint score and observed 693 fpQTLs associated with footprint-inferred TF binding (FDR < 5%). Given that Tn5 insertion sites are measured with base-pair resolution, we show that fpQTLs can aid GWAS and QTL fine-mapping by precisely pinpointing TF activity within broad trait-associated loci where the underlying causal variant is unknown. Liver fpQTLs were strongly enriched across ChIP-seq peaks, liver expression QTLs (eQTLs), and liver-related GWAS loci, and their inferred effect on TF binding was concordant with their effect on underlying sequence motifs in 80% of cases. We conclude that fpQTLs can reveal causal GWAS variants, define the role of TF binding site disruption in disease and provide functional insights into non-coding variants, ultimately informing novel treatments for common diseases.

3.
Blood ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39226462

RESUMEN

Genetic studies have identified numerous regions associated with plasma fibrinogen levels in Europeans, yet missing heritability and limited inclusion of non-Europeans necessitates further studies with improved power and sensitivity. Compared with array-based genotyping, whole genome sequencing (WGS) data provides better coverage of the genome and better representation of non-European variants. To better understand the genetic landscape regulating plasma fibrinogen levels, we meta-analyzed WGS data from the NHLBI's Trans-Omics for Precision Medicine (TOPMed) program (n=32,572), with array-based genotype data from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium (n=131,340) imputed to the TOPMed or Haplotype Reference Consortium panel. We identified 18 loci that have not been identified in prior genetic studies of fibrinogen. Of these, four are driven by common variants of small effect with reported MAF at least 10 percentage points higher in African populations. Three signals (SERPINA1, ZFP36L2, and TLR10) contain predicted deleterious missense variants. Two loci, SOCS3 and HPN, each harbor two conditionally distinct, non-coding variants. The gene region encoding the fibrinogen protein chain subunits (FGG;FGB;FGA), contains 7 distinct signals, including one novel signal driven by rs28577061, a variant common in African ancestry populations but extremely rare in Europeans (MAFAFR=0.180; MAFEUR=0.008). Through phenome-wide association studies in the VA Million Veteran Program, we found associations between fibrinogen polygenic risk scores and thrombotic and inflammatory disease phenotypes, including an association with gout. Our findings demonstrate the utility of WGS to augment genetic discovery in diverse populations and offer new insights for putative mechanisms of fibrinogen regulation.

4.
HGG Adv ; 5(4): 100340, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39138864

RESUMEN

Copy-number variants (CNVs) have been implicated in a variety of neuropsychiatric and cognitive phenotypes. We found that deleterious CNVs are less prevalent in non-European ancestry groups than they are in European ancestry groups of both the UK Biobank (UKBB) and a US replication cohort (SPARK). We also identified specific recurrent CNVs that consistently differ in frequency across ancestry groups in both the UKBB and SPARK. These ancestry-related differences in CNV prevalence present in both an unselected community population and a family cohort enriched with individuals diagnosed with autism spectrum disorder (ASD) strongly suggest that genetic ancestry should be considered when probing associations between CNVs and health outcomes.


Asunto(s)
Trastorno del Espectro Autista , Variaciones en el Número de Copia de ADN , Humanos , Variaciones en el Número de Copia de ADN/genética , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/epidemiología , Masculino , Femenino , Estudios de Cohortes , Población Blanca/genética , Predisposición Genética a la Enfermedad
5.
Mol Autism ; 15(1): 27, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877467

RESUMEN

BACKGROUND: Positive assortative mating (AM) in several neuropsychiatric traits, including autism, has been noted. However, it is unknown whether the pattern of AM is different in phenotypically defined autism subgroups [e.g., autism with and without intellectually disability (ID)]. It is also unclear what proportion of the phenotypic AM can be explained by the genetic similarity between parents of children with an autism diagnosis, and the consequences of AM on the genetic structure of the population. METHODS: To address these questions, we analyzed two family-based autism collections: the Simons Foundation Powering Autism Research for Knowledge (SPARK) (1575 families) and the Simons Simplex Collection (SSC) (2283 families). RESULTS: We found a similar degree of phenotypic and ancestry-related AM in parents of children with an autism diagnosis regardless of the presence of ID. We did not find evidence of AM for autism based on autism polygenic scores (PGS) (at a threshold of |r|> 0.1). The adjustment of ancestry-related AM or autism PGS accounted for only 0.3-4% of the fractional change in the estimate of the phenotypic AM. The ancestry-related AM introduced higher long-range linkage disequilibrium (LD) between single nucleotide polymorphisms (SNPs) on different chromosomes that are highly ancestry-informative compared to SNPs that are less ancestry-informative (D2 on the order of 1 × 10-5). LIMITATIONS: We only analyzed participants of European ancestry, limiting the generalizability of our results to individuals of non-European ancestry. SPARK and SSC were both multicenter studies. Therefore, there could be ancestry-related AM in SPARK and SSC due to geographic stratification. The study participants from each site were unknown, so we were unable to evaluate for geographic stratification. CONCLUSIONS: This study showed similar patterns of AM in autism with and without ID, and demonstrated that the common genetic influences of autism are likely relevant to both autism groups. The adjustment of ancestry-related AM and autism PGS accounted for < 5% of the fractional change in the estimate of the phenotypic AM. Future studies are needed to evaluate if the small increase of long-range LD induced by ancestry-related AM has impact on the downstream analysis.


Asunto(s)
Trastorno Autístico , Desequilibrio de Ligamiento , Fenotipo , Humanos , Trastorno Autístico/genética , Masculino , Femenino , Herencia Multifactorial , Niño , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Adulto , Discapacidad Intelectual/genética
6.
bioRxiv ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38766266

RESUMEN

Background: Autism spectrum disorder (ASD) is a highly heritable and heterogeneous neurodevelopmental disorder characterized by impaired social interactions, repetitive behaviors, and a wide range of comorbidities. Between 44-83% of autistic individuals report sleep disturbances, which may share an underlying neurodevelopmental basis with ASD. Methods: We recruited 382 ASD individuals and 223 of their family members to obtain quantitative ASD-related traits and wearable device-based accelerometer data spanning three consecutive weeks. An unbiased approach identifying traits associated with ASD was achieved by applying the elastic net machine learning algorithm with five-fold cross-validation on 6,878 days of data. The relationship between sleep and physical activity traits was examined through linear mixed-effects regressions using each night of data. Results: This analysis yielded 59 out of 242 actimetry measures associated with ASD status in the training set, which were validated in a test set (AUC: 0.777). For several of these traits (e.g. total light physical activity), the day-to-day variability, in addition to the mean, was associated with ASD. Individuals with ASD were found to have a stronger correlation between physical activity and sleep, where less physical activity decreased their sleep more significantly than that of their non-ASD relatives. Conclusions: The average duration of sleep/physical activity and the variation in the average duration of sleep/physical activity strongly predict ASD status. Physical activity measures were correlated with sleep quality, traits, and regularity, with ASD individuals having stronger correlations. Interventional studies are warranted to investigate whether improvements in both sleep and increased physical activity may improve the core symptoms of ASD.

7.
medRxiv ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38798629

RESUMEN

Importance: Childhood is a crucial developmental phase for mental health and cognitive function, both of which are commonly affected in patients with psychiatric disorders. This neurodevelopmental trajectory is shaped by a complex interplay of genetic and environmental factors. While common genetic variants account for a large proportion of inherited genetic risk, rare genetic variations, particularly copy number variants (CNVs), play a significant role in the genetic architecture of neurodevelopmental disorders. Despite their importance, the relevance of CNVs to child psychopathology and cognitive function in the general population remains underexplored. Objective: Investigating CNV associations with dimensions of child psychopathology and cognitive functions. Design Setting and Participants: ABCD® study focuses on a cohort of over 11,875 youth aged 9 to 10, recruited from 21 sites in the US, aiming to investigate the role of various factors, including brain, environment, and genetic factors, in the etiology of mental and physical health from middle childhood through early adulthood. Data analysis occurred from April 2023 to April 2024. Main Outcomes and Measures: In this study, we utilized PennCNV and QuantiSNP algorithms to identify duplications and deletions larger than 50Kb across a cohort of 11,088 individuals from the Adolescent Brain Cognitive Development® study. CNVs meeting quality control standards were subjected to a genome-wide association scan to identify regions associated with quantitative measures of broad psychiatric symptom domains and cognitive outcomes. Additionally, a CNV risk score, reflecting the aggregated burden of genetic intolerance to inactivation and dosage sensitivity, was calculated to assess its impact on variability in overall and dimensional child psychiatric and cognitive phenotypes. Results: In a final sample of 8,564 individuals (mean age=9.9 years, 4,532 males) passing quality control, we identified 4,111 individuals carrying 5,760 autosomal CNVs. Our results revealed significant associations between specific CNVs and our phenotypes of interest, psychopathology and cognitive function. For instance, a duplication at 10q26.3 was associated with overall psychopathology, and somatic complaints in particular. Additionally, deletions at 1q12.1, along with duplications at 14q11.2 and 10q26.3, were linked to overall cognitive function, with particular contributions from fluid intelligence (14q11.2), working memory (10q26.3), and reading ability (14q11.2). Moreover, individuals carrying CNVs previously associated with neurodevelopmental disorders exhibited greater impairment in social functioning and cognitive performance across multiple domains, in particular working memory. Notably, a higher deletion CNV risk score was significantly correlated with increased overall psychopathology (especially in dimensions of social functioning, thought disorder, and attention) as well as cognitive impairment across various domains. Conclusions and Relevance: In summary, our findings shed light on the contributions of CNVs to interindividual variability in complex traits related to neurocognitive development and child psychopathology.

8.
medRxiv ; 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37961462

RESUMEN

Background: Allostatic load is the cumulative "wear and tear" on the body due to chronic adversity. We aimed to test poly-environmental (exposomic) and polygenic contributions to allostatic load and their combined contribution to early adolescent mental health. Methods: We analyzed data on N = 5,035 diverse youth (mean age 12) from the Adolescent Brain Cognitive Development Study (ABCD). Using dimensionality reduction method, we calculated and overall allostatic load score (AL) using body mass index [BMI], waist circumference, blood pressure, blood glycemia, blood cholesterol, and salivary DHEA. Childhood exposomic risk was quantified using multi-level environmental exposures before age 11. Genetic risk was quantified using polygenic risk scores (PRS) for metabolic system susceptibility (type 2 diabetes [T2D]) and stress-related psychiatric disease (major depressive disorder [MDD]). We used linear mixed effects models to test main, additive, and interactive effects of exposomic and polygenic risk (independent variables) on AL (dependent variable). Mediation models tested the mediating role of AL on the pathway from exposomic and polygenic risk to youth mental health. Models adjusted for demographics and genetic principal components. Results: We observed disparities in AL with non-Hispanic White youth having significantly lower AL compared to Hispanic and Non-Hispanic Black youth. In the diverse sample, childhood exposomic burden was associated with AL in adolescence (beta=0.25, 95%CI 0.22-0.29, P<.001). In European ancestry participants (n=2,928), polygenic risk of both T2D and depression was associated with AL (T2D-PRS beta=0.11, 95%CI 0.07-0.14, P<.001; MDD-PRS beta=0.05, 95%CI 0.02-0.09, P=.003). Both polygenic scores showed significant interaction with exposomic risk such that, with greater polygenic risk, the association between exposome and AL was stronger. AL partly mediated the pathway to youth mental health from exposomic risk and from MDD-PRS, and fully mediated the pathway from T2D-PRS. Conclusions: AL can be quantified in youth using anthropometric and biological measures and is mapped to exposomic and polygenic risk. Main and interactive environmental and genetic effects support a diathesis-stress model. Findings suggest that both environmental and genetic risk be considered when modeling stress-related health conditions.

9.
bioRxiv ; 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37873315

RESUMEN

Both psychiatric vulnerability and cortical structure are shaped by the cumulative effect of common genetic variants across the genome. However, the shared genetic underpinnings between psychiatric disorders and brain structural phenotypes, such as thickness and surface area of the cerebral cortex, remains elusive. In this study, we employed pleiotropy-informed conjunctional false discovery rate analysis to investigate shared loci across genome-wide association scans of regional cortical thickness, surface area, and seven psychiatric disorders in approximately 700,000 individuals of European ancestry. Aggregating regional measures, we identified 50 genetic loci shared between psychiatric disorders and surface area, as well as 26 genetic loci shared with cortical thickness. Risk alleles exhibited bidirectional effects on both cortical thickness and surface area, such that some risk alleles for each disorder increased regional brain size while other risk alleles decreased regional brain size. Due to bidirectional effects, in many cases we observed extensive pleiotropy between an imaging phenotype and a psychiatric disorder even in the absence of a significant genetic correlation between them. The impact of genetic risk for psychiatric disorders on regional brain structure did exhibit a consistent pattern across highly comorbid psychiatric disorders, with 80% of the genetic loci shared across multiple disorders displaying consistent directions of effect. Cortical patterning of genetic overlap revealed a hierarchical genetic architecture, with the association cortex and sensorimotor cortex representing two extremes of shared genetic influence on psychiatric disorders and brain structural variation. Integrating multi-scale functional annotations and transcriptomic profiles, we observed that shared genetic loci were enriched in active genomic regions, converged on neurobiological and metabolic pathways, and showed differential expression in postmortem brain tissue from individuals with psychiatric disorders. Cumulatively, these findings provide a significant advance in our understanding of the overlapping polygenic architecture between psychopathology and cortical brain structure.

10.
Res Sq ; 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37886476

RESUMEN

Hemophilia-A (HA) is caused by heterogeneous loss-of-function factor (F)VIII gene (F8)-mutations and deficiencies in plasma-FVIII-activity that impair intrinsic-pathway-mediated coagulation-amplification. The standard-of-care for severe-HA-patients is regular infusions of therapeutic-FVIII-proteins (tFVIIIs) but ~30% develop neutralizing-tFVIII-antibodies called "FVIII-inhibitors (FEIs)" and become refractory. We used the PATH study and ImmunoChip to scan immune-mediated-disease (IMD)-genes for novel and/or replicated genomic-sequence-variations associated with baseline-FEI-status while accounting for non-independence of data due to genetic-relatedness and F8-mutational-heterogeneity. The baseline-FEI-status of 450 North American PATH subjects-206 with black-African-ancestry and 244 with white-European-ancestry-was the dependent variable. The F8-mutation-data and a genetic-relatedness matrix were incorporated into a binary linear-mixed model of genetic association with baseline-FEI-status. We adopted a gene-centric-association-strategy to scan, as candidates, pleiotropic-IMD-genes implicated in the development of either ³2 autoimmune-/autoinflammatory-disorders (AADs) or ³1 AAD and FEIs. Baseline-FEI-status was significantly associated with SNPs assigned to NOS2A (rs117382854; p=3.2E-6) and B3GNT2 (rs10176009; p=5.1E-6), which have functions in anti-microbial-/-tumoral-immunity. Among IMD-genes implicated in FEI-risk previously, we identified strong associations with CTLA4 assigned SNPs (p=2.2E-5). The F8-mutation-effect underlies ~15% of the total heritability for baseline-FEI-status. Additive genetic heritability and SNPs in IMD-genes account for >50% of the patient-specific variability in baseline-FEI-status. Race is a significant determinant independent of F8-mutation-effects and non-F8-genetics.

11.
Genes Brain Behav ; 22(5): e12864, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37736010

RESUMEN

Alcohol use disorders (AUD) are commonly occurring, heritable and polygenic disorders with etiological origins in the brain and the environment. To outline the causes and consequences of alcohol-related milestones, including AUD, and their related psychiatric comorbidities, the Collaborative Study on the Genetics of Alcoholism (COGA) was launched in 1989 with a gene-brain-behavior framework. COGA is a family based, diverse (~25% self-identified African American, ~52% female) sample, including data on 17,878 individuals, ages 7-97 years, in 2246 families of which a proportion are densely affected for AUD. All participants responded to questionnaires (e.g., personality) and the Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA) which gathers information on psychiatric diagnoses, conditions and related behaviors (e.g., parental monitoring). In addition, 9871 individuals have brain function data from electroencephalogram (EEG) recordings while 12,009 individuals have been genotyped on genome-wide association study (GWAS) arrays. A series of functional genomics studies examine the specific cellular and molecular mechanisms underlying AUD. This overview provides the framework for the development of COGA as a scientific resource in the past three decades, with individual reviews providing in-depth descriptions of data on and discoveries from behavioral and clinical, brain function, genetic and functional genomics data. The value of COGA also resides in its data sharing policies, its efforts to communicate scientific findings to the broader community via a project website and its potential to nurture early career investigators and to generate independent research that has broadened the impact of gene-brain-behavior research into AUD.


Asunto(s)
Alcoholismo , Humanos , Femenino , Masculino , Alcoholismo/genética , Estudio de Asociación del Genoma Completo , Genotipo , Encéfalo , Electroencefalografía
12.
Genes Brain Behav ; 22(5): e12862, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37587903

RESUMEN

Alcohol use disorder (AUD) and related health conditions result from a complex interaction of genetic, neural and environmental factors, with differential impacts across the lifespan. From its inception, the Collaborative Study on the Genetics of Alcoholism (COGA) has focused on the importance of brain function as it relates to the risk and consequences of alcohol use and AUD, through the examination of noninvasively recorded brain electrical activity and neuropsychological tests. COGA's sophisticated neurophysiological and neuropsychological measures, together with rich longitudinal, multi-modal family data, have allowed us to disentangle brain-related risk and resilience factors from the consequences of prolonged and heavy alcohol use in the context of genomic and social-environmental influences over the lifespan. COGA has led the field in identifying genetic variation associated with brain functioning, which has advanced the understanding of how genomic risk affects AUD and related disorders. To date, the COGA study has amassed brain function data on over 9871 participants, 7837 with data at more than one time point, and with notable diversity in terms of age (from 7 to 97), gender (52% female), and self-reported race and ethnicity (28% Black, 9% Hispanic). These data are available to the research community through several mechanisms, including directly through the NIAAA, through dbGAP, and in collaboration with COGA investigators. In this review, we provide an overview of COGA's data collection methods and specific brain function measures assessed, and showcase the utility, significance, and contributions these data have made to our understanding of AUD and related disorders, highlighting COGA research findings.


Asunto(s)
Alcoholismo , Humanos , Femenino , Masculino , Alcoholismo/genética , Consumo de Bebidas Alcohólicas , Encéfalo
13.
Am J Psychiatry ; 180(9): 685-698, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37434504

RESUMEN

OBJECTIVE: Copy number variants (CNVs) are well-known genetic pleiotropic risk factors for multiple neurodevelopmental and psychiatric disorders (NPDs), including autism (ASD) and schizophrenia. Little is known about how different CNVs conferring risk for the same condition may affect subcortical brain structures and how these alterations relate to the level of disease risk conferred by CNVs. To fill this gap, the authors investigated gross volume, vertex-level thickness, and surface maps of subcortical structures in 11 CNVs and six NPDs. METHODS: Subcortical structures were characterized using harmonized ENIGMA protocols in 675 CNV carriers (CNVs at 1q21.1, TAR, 13q12.12, 15q11.2, 16p11.2, 16p13.11, and 22q11.2; age range, 6-80 years; 340 males) and 782 control subjects (age range, 6-80 years; 387 males) as well as ENIGMA summary statistics for ASD, schizophrenia, attention deficit hyperactivity disorder, obsessive-compulsive disorder, bipolar disorder, and major depression. RESULTS: All CNVs showed alterations in at least one subcortical measure. Each structure was affected by at least two CNVs, and the hippocampus and amygdala were affected by five. Shape analyses detected subregional alterations that were averaged out in volume analyses. A common latent dimension was identified, characterized by opposing effects on the hippocampus/amygdala and putamen/pallidum, across CNVs and across NPDs. Effect sizes of CNVs on subcortical volume, thickness, and local surface area were correlated with their previously reported effect sizes on cognition and risk for ASD and schizophrenia. CONCLUSIONS: The findings demonstrate that subcortical alterations associated with CNVs show varying levels of similarities with those associated with neuropsychiatric conditions, as well distinct effects, with some CNVs clustering with adult-onset conditions and others with ASD. These findings provide insight into the long-standing questions of why CNVs at different genomic loci increase the risk for the same NPD and why a single CNV increases the risk for a diverse set of NPDs.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Esquizofrenia , Masculino , Adulto , Humanos , Niño , Adolescente , Adulto Joven , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Variaciones en el Número de Copia de ADN/genética , Esquizofrenia/genética , Encéfalo/diagnóstico por imagen , Trastorno por Déficit de Atención con Hiperactividad/genética , Genómica
14.
Biol Psychiatry Glob Open Sci ; 3(3): 519-529, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37519455

RESUMEN

Background: Polygenic risk scores (PRSs) are indices of genetic liability for illness, but their clinical utility for predicting risk for a specific psychiatric disorder is limited. Genetic overlap among disorders and their effects on allied phenotypes may be a possible explanation, but this has been difficult to quantify given focus on singular disorders and/or allied phenotypes. Methods: We constructed PRSs for 5 psychiatric disorders (schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorder, attention-deficit/hyperactivity disorder) and 3 nonpsychiatric control traits (height, type II diabetes, irritable bowel disease) in the UK Biobank (N = 31,616) and quantified associations between PRSs and phenotypes allied with mental illness: behavioral (symptoms, cognition, trauma) and brain measures from magnetic resonance imaging. We then evaluated the extent of specificity among PRSs and their effects on these allied phenotypes. Results: Correlations among psychiatric PRSs replicated previous work, with overlap between schizophrenia and bipolar disorder, which was distinct from overlap between autism spectrum disorder and attention-deficit/hyperactivity disorder; overlap between psychiatric and control PRSs was minimal. There was, however, substantial overlap of PRS effects on allied phenotypes among psychiatric disorders and among psychiatric disorders and control traits, where the extent and pattern of overlap was phenotype specific. Conclusions: Results show that genetic distinctions between psychiatric disorders and between psychiatric disorders and control traits exist, but this does not extend to their effects on allied phenotypes. Although overlap can be informative, work is needed to construct PRSs that will function at the level of specificity needed for clinical application.

15.
medRxiv ; 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37398003

RESUMEN

Genetic studies have identified numerous regions associated with plasma fibrinogen levels in Europeans, yet missing heritability and limited inclusion of non-Europeans necessitates further studies with improved power and sensitivity. Compared with array-based genotyping, whole genome sequencing (WGS) data provides better coverage of the genome and better representation of non-European variants. To better understand the genetic landscape regulating plasma fibrinogen levels, we meta-analyzed WGS data from the NHLBI's Trans-Omics for Precision Medicine (TOPMed) program (n=32,572), with array-based genotype data from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium (n=131,340) imputed to the TOPMed or Haplotype Reference Consortium panel. We identified 18 loci that have not been identified in prior genetic studies of fibrinogen. Of these, four are driven by common variants of small effect with reported MAF at least 10% higher in African populations. Three ( SERPINA1, ZFP36L2 , and TLR10) signals contain predicted deleterious missense variants. Two loci, SOCS3 and HPN , each harbor two conditionally distinct, non-coding variants. The gene region encoding the protein chain subunits ( FGG;FGB;FGA ), contains 7 distinct signals, including one novel signal driven by rs28577061, a variant common (MAF=0.180) in African reference panels but extremely rare (MAF=0.008) in Europeans. Through phenome-wide association studies in the VA Million Veteran Program, we found associations between fibrinogen polygenic risk scores and thrombotic and inflammatory disease phenotypes, including an association with gout. Our findings demonstrate the utility of WGS to augment genetic discovery in diverse populations and offer new insights for putative mechanisms of fibrinogen regulation. Key Points: Largest and most diverse genetic study of plasma fibrinogen identifies 54 regions (18 novel), housing 69 conditionally distinct variants (20 novel).Sufficient power achieved to identify signal driven by African population variant.Links to (1) liver enzyme, blood cell and lipid genetic signals, (2) liver regulatory elements, and (3) thrombotic and inflammatory disease.

16.
Behav Sci (Basel) ; 13(5)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37232664

RESUMEN

Memory problems are common among older adults with a history of alcohol use disorder (AUD). Employing a machine learning framework, the current study investigates the use of multi-domain features to classify individuals with and without alcohol-induced memory problems. A group of 94 individuals (ages 50-81 years) with alcohol-induced memory problems (the memory group) were compared with a matched control group who did not have memory problems. The random forests model identified specific features from each domain that contributed to the classification of the memory group vs. the control group (AUC = 88.29%). Specifically, individuals from the memory group manifested a predominant pattern of hyperconnectivity across the default mode network regions except for some connections involving the anterior cingulate cortex, which were predominantly hypoconnected. Other significant contributing features were: (i) polygenic risk scores for AUD, (ii) alcohol consumption and related health consequences during the past five years, such as health problems, past negative experiences, withdrawal symptoms, and the largest number of drinks in a day during the past twelve months, and (iii) elevated neuroticism and increased harm avoidance, and fewer positive "uplift" life events. At the neural systems level, hyperconnectivity across the default mode network regions, including the connections across the hippocampal hub regions, in individuals with memory problems may indicate dysregulation in neural information processing. Overall, the study outlines the importance of utilizing multidomain features, consisting of resting-state brain connectivity data collected ~18 years ago, together with personality, life experiences, polygenic risk, and alcohol consumption and related consequences, to predict the alcohol-related memory problems that arise in later life.

17.
medRxiv ; 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36865328

RESUMEN

Objectives: Copy number variants (CNVs) are well-known genetic pleiotropic risk factors for multiple neurodevelopmental and psychiatric disorders (NPDs) including autism (ASD) and schizophrenia (SZ). Overall, little is known about how different CNVs conferring risk for the same condition may affect subcortical brain structures and how these alterations relate to the level of disease risk conferred by CNVs. To fill this gap, we investigated gross volume, and vertex level thickness and surface maps of subcortical structures in 11 different CNVs and 6 different NPDs. Methods: Subcortical structures were characterized using harmonized ENIGMA protocols in 675 CNV carriers (at the following loci: 1q21.1, TAR, 13q12.12, 15q11.2, 16p11.2, 16p13.11, and 22q11.2) and 782 controls (Male/Female: 727/730; age-range: 6-80 years) as well as ENIGMA summary-statistics for ASD, SZ, ADHD, Obsessive-Compulsive-Disorder, Bipolar-Disorder, and Major-Depression. Results: Nine of the 11 CNVs affected volume of at least one subcortical structure. The hippocampus and amygdala were affected by five CNVs. Effect sizes of CNVs on subcortical volume, thickness and local surface area were correlated with their previously reported effect sizes on cognition and risk for ASD and SZ. Shape analyses were able to identify subregional alterations that were averaged out in volume analyses. We identified a common latent dimension - characterized by opposing effects on basal ganglia and limbic structures - across CNVs and across NPDs. Conclusion: Our findings demonstrate that subcortical alterations associated with CNVs show varying levels of similarities with those associated with neuropsychiatric conditions. We also observed distinct effects with some CNVs clustering with adult conditions while others clustered with ASD. This large cross-CNV and NPDs analysis provide insight into the long-standing questions of why CNVs at different genomic loci increase the risk for the same NPD, as well as why a single CNV increases the risk for a diverse set of NPDs.

18.
Mol Psychiatry ; 28(4): 1480-1493, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36737482

RESUMEN

Copy number variants (CNVs) are deletions and duplications of DNA sequence. The most frequently studied CNVs, which are described in this review, are recurrent CNVs that occur in the same locations on the genome. These CNVs have been strongly implicated in neurodevelopmental disorders, namely autism spectrum disorder (ASD), intellectual disability (ID), and developmental delay (DD), but also in schizophrenia. More recent work has also shown that CNVs increase risk for other psychiatric disorders, namely, depression, bipolar disorder, and post-traumatic stress disorder. Many of the same CNVs are implicated across all of these disorders, and these neuropsychiatric CNVs are also associated with cognitive ability in the general population, as well as with structural and functional brain alterations. Neuropsychiatric CNVs also show incomplete penetrance, such that carriers do not always develop any psychiatric disorder, and may show only mild symptoms, if any. Variable expressivity, whereby the same CNVs are associated with many different phenotypes of varied severity, also points to highly complex mechanisms underlying disease risk in CNV carriers. Comprehensive and longitudinal phenotyping studies of individual CNVs have provided initial insights into these mechanisms. However, more work is needed to estimate and predict the effect of non-recurrent, ultra-rare CNVs, which also contribute to psychiatric and cognitive outcomes. Moreover, delineating the broader phenotypic landscape of neuropsychiatric CNVs in both clinical and general population cohorts may also offer important mechanistic insights.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Esquizofrenia , Humanos , Variaciones en el Número de Copia de ADN/genética , Trastorno del Espectro Autista/genética , Esquizofrenia/genética , Discapacidad Intelectual/genética , Cognición
19.
Biol Psychiatry ; 94(7): 591-600, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36764568

RESUMEN

BACKGROUND: Our understanding of the impact of copy number variants (CNVs) on psychopathology and their joint influence with polygenic risk scores (PRSs) remains limited. METHODS: The UK Biobank recruited 502,534 individuals ages 37 to 73 years living in the United Kingdom between 2006 and 2010. After quality control, genotype data from 459,855 individuals were available for CNV calling. A total of 61 commonly studied recurrent neuropsychiatric CNVs were selected for analyses and examined individually and in aggregate (any CNV, deletion, or duplication). CNV risk scores were used to quantify intolerance of CNVs to haploinsufficiency. Major depressive disorder and generalized anxiety disorder PRSs were generated for White British individuals (N = 408,870). Mood/anxiety factor scores were generated using item-level questionnaire data (N = 501,289). RESULTS: CNV carriers showed higher mood/anxiety scores than noncarriers, with the largest effects seen for intolerant deletions. A total of 11 individual deletions and 8 duplications were associated with higher mood/anxiety. Carriers of the 9p24.3 (DMRT1) duplication showed lower mood/anxiety. Associations remained significant for most CNVs when excluding individuals with psychiatric diagnoses. Nominally significant CNV × PRS interactions provided preliminary evidence that associations between select individual CNVs, but not CNVs in aggregate, and mood/anxiety may be modulated by PRSs. CONCLUSIONS: CNVs associated with risk for psychiatric disorders showed small to large effects on dimensional mood/anxiety scores in a general population cohort, even when excluding individuals with psychiatric diagnoses. CNV × PRS interactions showed that associations between select CNVs and mood/anxiety may be modulated by PRSs.


Asunto(s)
Trastorno Depresivo Mayor , Trastornos Mentales , Humanos , Variaciones en el Número de Copia de ADN/genética , Bancos de Muestras Biológicas , Trastornos Mentales/genética , Reino Unido , Factores de Riesgo
20.
Biol Psychiatry ; 93(1): 45-58, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36372570

RESUMEN

BACKGROUND: Polygenicity and genetic heterogeneity pose great challenges for studying psychiatric conditions. Genetically informed approaches have been implemented in neuroimaging studies to address this issue. However, the effects on functional connectivity of rare and common genetic risks for psychiatric disorders are largely unknown. Our objectives were to estimate and compare the effect sizes on brain connectivity of psychiatric genomic risk factors with various levels of complexity: oligogenic copy number variants (CNVs), multigenic CNVs, and polygenic risk scores (PRSs) as well as idiopathic psychiatric conditions and traits. METHODS: Resting-state functional magnetic resonance imaging data were processed using the same pipeline across 9 datasets. Twenty-nine connectome-wide association studies were performed to characterize the effects of 15 CNVs (1003 carriers), 7 PRSs, 4 idiopathic psychiatric conditions (1022 individuals with autism, schizophrenia, bipolar conditions, or attention-deficit/hyperactivity disorder), and 2 traits (31,424 unaffected control subjects). RESULTS: Effect sizes on connectivity were largest for psychiatric CNVs (estimates: 0.2-0.65 z score), followed by psychiatric conditions (0.15-0.42), neuroticism and fluid intelligence (0.02-0.03), and PRSs (0.01-0.02). Effect sizes of CNVs on connectivity were correlated to their effects on cognition and risk for disease (r = 0.9, p = 5.93 × 10-6). However, effect sizes of CNVs adjusted for the number of genes significantly decreased from small oligogenic to large multigenic CNVs (r = -0.88, p = 8.78 × 10-6). PRSs had disproportionately low effect sizes on connectivity compared with CNVs conferring similar risk for disease. CONCLUSIONS: Heterogeneity and polygenicity affect our ability to detect brain connectivity alterations underlying psychiatric manifestations.


Asunto(s)
Heterogeneidad Genética , Psiquiatría , Humanos , Predisposición Genética a la Enfermedad , Herencia Multifactorial/genética , Encéfalo/diagnóstico por imagen , Variaciones en el Número de Copia de ADN/genética , Estudio de Asociación del Genoma Completo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA