Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
bioRxiv ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38617250

RESUMEN

East African cichlid fishes have diversified in an explosive fashion, but the (epi)genetic basis of the phenotypic diversity of these fishes remains largely unknown. Although transposable elements (TEs) have been associated with phenotypic variation in cichlids, little is known about their transcriptional activity and epigenetic silencing. Here, we describe dynamic patterns of TE expression in African cichlid gonads and during early development. Orthology inference revealed an expansion of piwil1 genes in Lake Malawi cichlids, likely driven by PiggyBac TEs. The expanded piwil1 copies have signatures of positive selection and retain amino acid residues essential for catalytic activity. Furthermore, the gonads of African cichlids express a Piwi-interacting RNA (piRNA) pathway that target TEs. We define the genomic sites of piRNA production in African cichlids and find divergence in closely related species, in line with fast evolution of piRNA-producing loci. Our findings suggest dynamic co-evolution of TEs and host silencing pathways in the African cichlid radiations. We propose that this co-evolution has contributed to cichlid genomic diversity.

2.
Open Biol ; 13(11): 230257, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38018094

RESUMEN

African cichlid fishes of the Cichlidae family are a group of teleosts important for aquaculture and research. A thriving research community is particularly interested in the cichlid radiations of the East African Great Lakes. One key goal is to pinpoint genetic variation underlying phenotypic diversification, but the lack of genetic tools has precluded thorough dissection of the genetic basis of relevant traits in cichlids. Genome editing technologies are well established in teleost models like zebrafish and medaka. However, this is not the case for emerging model organisms, such as East African cichlids, where these technologies remain inaccessible to most laboratories, due in part to limited exchange of knowledge and expertise. The Cichlid Science 2022 meeting (Cambridge, UK) hosted for the first time a Genome Editing Workshop, where the community discussed recent advances in genome editing, with an emphasis on CRISPR/Cas9 technologies. Based on the workshop findings and discussions, in this review we define the state-of-the-art of cichlid genome editing, share resources and protocols, and propose new possible avenues to further expand the cichlid genome editing toolkit.


Asunto(s)
Cíclidos , Tilapia , Animales , Cíclidos/genética , Edición Génica , Filogenia , Tilapia/genética , África Oriental
3.
Trends Genet ; 38(6): 529-553, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35307201

RESUMEN

Transposable element (TE)-derived sequences are ubiquitous in most eukaryotic genomes known to date. Because their expression and mobility can lead to genomic instability, several pathways have evolved to control TEs. Nevertheless, TEs represent an important source of genomic novelty and are often co-opted for novel functions that are relevant for phenotypic divergence and adaptation. Here, we review how animals, in particular vertebrates, mitigate TE mobility and expression, alongside known examples of TE domestication. We argue that the next frontier is to understand the determinants and dynamics of TE domestication: how they shift from 'non-self' targets of epigenetic silencing to 'self' genetic elements. New technologies enable avenues of research that may close the gap between epigenetic silencing and domestication of TEs.


Asunto(s)
Elementos Transponibles de ADN , Domesticación , Animales , Elementos Transponibles de ADN/genética , Epigénesis Genética/genética , Eucariontes/genética , Evolución Molecular , Vertebrados/genética
4.
Nat Commun ; 12(1): 2668, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976151

RESUMEN

Telomeres are bound by dedicated proteins, which protect them from DNA damage and regulate telomere length homeostasis. In the nematode Caenorhabditis elegans, a comprehensive understanding of the proteins interacting with the telomere sequence is lacking. Here, we harnessed a quantitative proteomics approach to identify TEBP-1 and TEBP-2, two paralogs expressed in the germline and embryogenesis that associate to telomeres in vitro and in vivo. tebp-1 and tebp-2 mutants display strikingly distinct phenotypes: tebp-1 mutants have longer telomeres than wild-type animals, while tebp-2 mutants display shorter telomeres and a Mortal Germline. Notably, tebp-1;tebp-2 double mutant animals have synthetic sterility, with germlines showing signs of severe mitotic and meiotic arrest. Furthermore, we show that POT-1 forms a telomeric complex with TEBP-1 and TEBP-2, which bridges TEBP-1/-2 with POT-2/MRT-1. These results provide insights into the composition and organization of a telomeric protein complex in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Sitios de Unión/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/clasificación , Proteínas de Caenorhabditis elegans/genética , ADN/genética , Proteínas de Unión al ADN/genética , Células Germinativas/metabolismo , Microscopía Fluorescente/métodos , Complejos Multiproteicos/genética , Mutación , Filogenia , Unión Proteica , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Telómero/genética , Proteínas de Unión a Telómeros/clasificación , Proteínas de Unión a Telómeros/genética
5.
PLoS Genet ; 15(2): e1007784, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30759082

RESUMEN

Endogenous small RNAs (sRNAs) and Argonaute proteins are ubiquitous regulators of gene expression in germline and somatic tissues. sRNA-Argonaute complexes are often expressed in gametes and are consequently inherited by the next generation upon fertilization. In Caenorhabditis elegans, 26G-RNAs are primary endogenous sRNAs that trigger the expression of downstream secondary sRNAs. Two subpopulations of 26G-RNAs exist, each of which displaying strongly compartmentalized expression: one is expressed in the spermatogenic gonad and associates with the Argonautes ALG-3/4; plus another expressed in oocytes and in embryos, which associates with the Argonaute ERGO-1. The determinants and dynamics of gene silencing elicited by 26G-RNAs are largely unknown. Here, we provide diverse new insights into these endogenous sRNA pathways of C. elegans. Using genetics and deep sequencing, we dissect a maternal effect of the ERGO-1 branch of the 26G-RNA pathway. We find that maternal primary sRNAs can trigger the production of zygotic secondary sRNAs that are able to silence targets, even in the absence of zygotic primary triggers. Thus, the interaction of maternal and zygotic sRNA populations, assures target gene silencing throughout animal development. Furthermore, we explore other facets of 26G-RNA biology related to the ALG-3/4 branch. We find that sRNA abundance, sRNA pattern of origin and the 3' UTR length of target transcripts are predictors of the regulatory outcome by the Argonautes ALG-3/4. Lastly, we provide evidence suggesting that ALG-3 and ALG-4 regulate their own mRNAs in a negative feedback loop. Altogether, we provide several new regulatory insights on the dynamics, target regulation and self-regulation of the endogenous RNAi pathways of C. elegans.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Genes Reguladores/genética , Interferencia de ARN/fisiología , Cigoto/fisiología , Regiones no Traducidas 3'/genética , Animales , Proteínas Argonautas/genética , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Silenciador del Gen/fisiología , Células Germinativas/fisiología , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/genética
6.
MethodsX ; 6: 265-272, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30788220

RESUMEN

RNA interference was first described in the nematode Caenorhabditis elegans. Ever since, several new endogenous small RNA pathways have been described and characterized to different degrees. The very prominent secondary small interfering RNAs, also called 22G-RNAs, bear a 5' triphosphate group after loading into an Argonaute protein. This creates a technical issue, since 5'PPP groups decrease cloning efficiency for small RNA sequencing. To increase cloning efficiency of these small RNA species, a common practice in the field is the treatment of RNA samples, prior to library preparation, with Tobacco Acid pyrophosphatase (TAP). Recently, TAP production and supply was discontinued, so an alternative must be devised. We turned to RNA 5' pyrophosphohydrolase (RppH), a commercially available pyrophosphatase isolated from E. coli. Here we directly compare TAP and RppH in their use for small RNA library preparation. We show that RppH-treated samples faithfully recapitulate TAP-treated samples. Specifically, there is enrichment for 22G-RNAs and mapped small RNA reads show no small RNA transcriptome-wide differences between RppH and TAP treatment. We propose that RppH can be used as a small RNA pyrophosphatase to enrich for triphosphorylated small RNA species and show that RppH- and TAP-derived datasets can be used in direct comparison. •We show that treatment of small RNA samples with RppH prior to sequencing library preparation increases the cloning efficiency of 5' triphosphorylated small RNAs;•RppH treatment is a valid alternative to TAP treatment.

7.
Noncoding RNA ; 5(1)2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30650636

RESUMEN

Selfish genetic elements, like transposable elements or viruses, are a threat to genomic stability. A variety of processes, including small RNA-based RNA interference (RNAi)-like pathways, has evolved to counteract these elements. Amongst these, endogenous small interfering RNA and Piwi-interacting RNA (piRNA) pathways were implicated in silencing selfish genetic elements in a variety of organisms. Nematodes have several incredibly specialized, rapidly evolving endogenous RNAi-like pathways serving such purposes. Here, we review recent research regarding the RNAi-like pathways of Caenorhabditis elegans as well as those of other nematodes, to provide an evolutionary perspective. We argue that multiple nematode RNAi-like pathways share piRNA-like properties and together form a broad nematode toolkit that allows for silencing of foreign genetic elements.

8.
EMBO J ; 37(12)2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29769402

RESUMEN

Argonaute proteins and their associated small RNAs (sRNAs) are evolutionarily conserved regulators of gene expression. Gametocyte-specific factor 1 (Gtsf1) proteins, characterized by two tandem CHHC zinc fingers and an unstructured C-terminal tail, are conserved in animals and have been shown to interact with Piwi clade Argonautes, thereby assisting their activity. We identified the Caenorhabditis elegans Gtsf1 homolog, named it gtsf-1 and characterized it in the context of the sRNA pathways of C. elegans We report that GTSF-1 is not required for Piwi-mediated gene silencing. Instead, gtsf-1 mutants show a striking depletion of 26G-RNAs, a class of endogenous sRNAs, fully phenocopying rrf-3 mutants. We show, both in vivo and in vitro, that GTSF-1 interacts with RRF-3 via its CHHC zinc fingers. Furthermore, we demonstrate that GTSF-1 is required for the assembly of a larger RRF-3 and DCR-1-containing complex (ERIC), thereby allowing for 26G-RNA generation. We propose that GTSF-1 homologs may act to drive the assembly of larger complexes that act in sRNA production and/or in imposing sRNA-mediated silencing activities.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Silenciador del Gen , ARN de Helminto/biosíntesis , ARN no Traducido/biosíntesis , ARN Polimerasa Dependiente del ARN/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Mutación , ARN de Helminto/genética , ARN no Traducido/genética , ARN Polimerasa Dependiente del ARN/genética
9.
EMBO J ; 31(16): 3422-30, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22850670

RESUMEN

In recent years, the Piwi pathway has been shown to regulate the silencing of mobile genetic elements. However, we know little about how Piwi pathways impose silencing and even less about trans-generational stability of Piwi-induced silencing. We demonstrate that the Caenorhabditis elegans Piwi protein PRG-1 can initiate an extremely stable form of gene silencing on a transgenic, single-copy target. This type of silencing is faithfully maintained over tens of generations in the absence of a functional Piwi pathway. Interestingly, RNAi can also trigger permanent gene silencing of a single-copy transgene and the phenomenon will be collectively referred to as RNA-induced epigenetic silencing (RNAe). RNAe can act in trans and is dependent on endogenous RNAi factors. The involvement of factors known to act in nuclear RNAi and the fact that RNAe is accompanied by repressive chromatin marks indicate that RNAe includes a transcriptional silencing component. Our results demonstrate that, at least in C. elegans, the Piwi pathway can impose a state of gene silencing that borders on 'permanently silent'. Such a property may be more widely conserved among Piwi pathways in different animals.


Asunto(s)
Proteínas Argonautas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/fisiología , Silenciador del Gen , Animales , Animales Modificados Genéticamente , Perfilación de la Expresión Génica , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA