Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Plants (Basel) ; 13(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38611480

RESUMEN

Under salinity conditions, growth and productivity of grain crops decrease, leading to inhibition and limited absorption of water and elements necessary for plant growth, osmotic imbalance, ionic stress, and oxidative stress. Microorganisms in bio-fertilizers have several mechanisms to provide benefits to crop plants and reduce the harmful effect of salinity. They can be effective in dissolving phosphate, fixing nitrogen, promoting plant growth, and can have a combination of all these qualities. During two successful agricultural seasons, two field experiments were conducted to evaluate the effect of bio-fertilizer applications, including phosphate solubilizing bacteria (PSB), nitrogen fixation bacteria and a mix of phosphate-solubilizing bacteria and nitrogen fixation bacteria with three rates, 50, 75 and 100% NPK, of the recommended dose of minimal fertilizer on agronomic traits, yield and nutrient uptake of barley (Hordeum vulgare) under saline condition in Village 13, Farafra Oasis, New Valley Governorate, Egypt. The results showed that the application of Microbein + 75% NPK recorded the highest values of plant height, spike length, number of spikes/m2, grain yield (Mg ha-1), straw yield (Mg ha-1), biological yield (Mg ha-1), protein content %, nitrogen (N), phosphorus (P), potassium (K) uptakes in grain and straw (kg ha-1), available nitrogen (mg/kg soil), available phosphorus (mg/kg soil), total microbial count of soil, antioxidant activity of soil (AOA), dehydrogenase, nitrogen fixers, and PSB counts. The application of bio-fertilizers led to an increase in plant tolerance to salt stress, plant growth, grain yield, and straw yield, in addition to the application of the bio-fertilizers, which resulted in a 25% saving in the cost of mineral fertilizers used in barley production.

2.
BMC Plant Biol ; 24(1): 191, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38486134

RESUMEN

BACKGROUND: Enriching the soil with organic matter such as humic and fulvic acid to increase its content available nutrients, improves the chemical properties of the soil and increases plant growth as well as grain yield. In this study, we conducted a field experiment using humic acid (HA), fulvic acid (FA) and recommended dose (RDP) of phosphorus fertilizer to treat Hordeum vulgare seedling, in which four concentrations from HA, FA and RDP (0.0 %, 50 %, 75 % and 100%) under saline soil conditions . Moreover, some agronomic traits (e.g. grain yield, straw yield, spikes weight, plant height, spike length and spike weight) in barley seedling after treated with different concentrations from HA, FA and RDP were determined. As such the beneficial effects of these combinations to improve plant growth, N, P, and K uptake, grain yield, and its components under salinity stress were assessed. RESULTS: The findings showed that the treatments HA + 100% RDP (T1), HA + 75% RDP (T2), FA + 100% RDP (T5), HA + 50% RDP (T3), and FA + 75% RDP (T6), improved number of spikes/plant, 1000-grain weight, grain yield/ha, harvest index, the amount of uptake of nitrogen (N), phosphorous (P) and potassium (K) in straw and grain. The increase for grain yield over the control was 64.69, 56.77, 49.83, 49.17, and 44.22% in the first season, and 64.08, 56.63, 49.19, 48.87, and 43.69% in the second season,. Meanwhile, the increase for grain yield when compared to the recommended dose was 22.30, 16.42, 11.27, 10.78, and 7.11% in the first season, and 22.17, 16.63, 11.08, 10.84, and 6.99% in the second season. Therefore, under salinity conditions the best results were obtained when, in addition to phosphate fertilizer, the soil was treated with humic acid or foliar application the plants with fulvic acid under one of the following treatments: HA + 100% RDP (T1), HA + 75% RDP (T2), FA + 100% RDP (T5), HA + 50% RDP (T3), and FA + 75% RDP (T6). CONCLUSIONS: The result of the use of organic amendments was an increase in the tolerance of barley plant to salinity stress, which was evident from the improvement in the different traits that occurred after the treatment using treatments that included organic amendments (humic acid or fulvic acid).


Asunto(s)
Benzopiranos , Hordeum , Suelo , Suelo/química , Sustancias Húmicas/análisis , Fertilizantes/análisis , Fósforo
3.
Genes (Basel) ; 13(10)2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36292729

RESUMEN

This study aimed to evaluate the effects of marjoram extract on oocyte maturation and gene expression in sheep oocytes and embryos. The first experiment studied the effect of the extract as an antioxidant to improve the in vitro maturation media used for sheep oocytes; the oocytes were matured in a TCM199 medium supplemented with 1 or 10 µg/mL of marjoram extract or the control, 0 µg, for 24 hr. Then, the maturation was estimated, and the gene expression was measured by using qPCR. The second experiment studied the effect of the extract on the development of sheep embryos produced in vitro; the fertilized oocytes were cultured in a SOF medium supplemented with 1 or 10 µg/mL of marjoram extract or the control, 0 µg, for 7 days. Then, the gene expression was measured using qPCR. The results showed that the marjoram extract did not improve nuclear maturation or the blastocyst rate. There was a significant increase in the level of GDF-9 gene expression in mature oocytes in the treatment groups. An increase in the expression of BCL-2 and EGR-1 genes was observed for the blastocysts in the 10 µg/mL group. We concluded that the marjoram extract did not improve nuclear maturation, but it did affect the expression of some genes in sheep oocytes and embryos.


Asunto(s)
Origanum , Ovinos , Animales , Origanum/metabolismo , Factor 9 de Diferenciación de Crecimiento , Fertilización In Vitro/veterinaria , Antioxidantes/metabolismo , Oocitos/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2 , Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA