Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Sci Rep ; 14(1): 10787, 2024 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734765

RESUMEN

Radioligand therapy with [177Lu]Lu-PSMA-617 can be used to prolong life and reduce tumor burden in terminally ill castration resistant prostate cancer patients. Still, accumulation in healthy tissue limits the activity that can be administered. Therefore, fractionated therapy is used to lower toxicity. However, there might be a need to reduce toxicity even further with e.g. radioprotectors. The aim of this study was to (i). establish a preclinical mouse model with fractionated high activity therapy of three consecutive doses of 200 MBq [177Lu]Lu-PSMA-617 in which we aimed to (ii). achieve measurable hematotoxicity and nephrotoxicity and to (iii). analyze the potential protective effect of co-injecting recombinant α1-microglobulin (rA1M), a human antioxidant previously shown to have radioprotective effects. In both groups, three cycles resulted in increased albuminuria for each cycle, with large individual variation. Another marker of kidney injury, serum blood urea nitrogen (BUN), was only significantly increased compared to control animals after the third cycle. The number of white and red blood cells decreased significantly and did not reach the levels of control animals during the experiment. rA1M did reduce absorbed dose to kidney but did not show significant protection here, but future studies are warranted due to the recent clinical studies showing a significant renoprotective effect in patients.


Asunto(s)
alfa-Globulinas , Dipéptidos , Compuestos Heterocíclicos con 1 Anillo , Lutecio , Animales , Humanos , Ratones , alfa-Globulinas/metabolismo , Nitrógeno de la Urea Sanguínea , Dipéptidos/farmacología , Riñón/patología , Riñón/efectos de la radiación , Riñón/efectos de los fármacos , Riñón/metabolismo , Antígeno Prostático Específico , Neoplasias de la Próstata Resistentes a la Castración/radioterapia , Neoplasias de la Próstata Resistentes a la Castración/patología , Radiofármacos
2.
Am J Nucl Med Mol Imaging ; 13(3): 107-117, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457328

RESUMEN

One novel option for treating metastatic castration resistant prostate cancer is radionuclide therapy targeting prostate-specific membrane antigen (PSMA), e.g. [177Lu]Lu-PSMA-617. Overexpression of HER2 has been found in 80% of metastatic cases of prostate cancer. Previous research showed that HER2 is elevated post irradiation in PC-3 prostate cancer cells. Co-treating with anti-HER2 antibody Trastuzumab gave less proliferation of irradiated tumor cells in vitro, and when using radionuclide therapy, also in vivo. The aim of this study is to determine whether the same holds true in PSMA-expressing PC-3 PIP cells using [177Lu]Lu-PSMA-617 radionuclide therapy. PC-3 PIP and 22Rv1 prostate cancer cells were tested in vitro, treated with 6 Gy of x-rays with or without Trastuzumab incubation. We measured uptake of HER2-targeting affibody [68Ga]Ga-ABY-025 and cell survival, e.g. using the WST-1 assay. Three groups (n=10 each) of male nude Balb/c mice were inoculated with PC-3 PIP xenograft tumors and treated with just [177Lu]Lu-PSMA-617 (20 MBq), [177Lu]Lu-PSMA-617 (20 MBq) and Trastuzumab (4 × 5 mg/kg), or left untreated. Tumor sizes and animal survival was observed. In vitro, x-ray irradiation did reduce survival in 22Rv1 but not PC-3 PIP cells, and there was no significant effect of Trastuzumab treatment. Cells expressed HER2 but not significantly elevated post irradiation. In vivo, mice co-treated with Trastuzumab had significantly longer survival than untreated mice, but not than only [177Lu]Lu-PSMA-617. Staining of tumor sections showed similar HER2 and PSMA expression across groups. In conclusion, these results give no support for any benefit from co-treatment with anti-HER2 antibody for PSMA-targeted radioligand therapy.

3.
Mol Cancer Res ; 21(4): 307-315, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36608299

RESUMEN

Noninvasive biomarkers for androgen receptor (AR) pathway activation are urgently needed to better monitor patient response to prostate cancer therapies. AR is a critical driver and mediator of resistance of prostate cancer but currently available noninvasive prostate cancer biomarkers to monitor AR activity are discordant with downstream AR pathway activity. External beam radiotherapy (EBRT) remains a common treatment for all stages of prostate cancer, and DNA damage induced by EBRT upregulates AR pathway activity to promote therapeutic resistance. [89Zr]11B6-PET is a novel modality targeting prostate-specific protein human kallikrein 2 (hK2), which is a surrogate biomarker for AR activity. Here, we studied whether [89Zr]11B6-PET can accurately assess EBRT-induced AR activity.Genetic and human prostate cancer mouse models received EBRT (2-50 Gy) and treatment response was monitored by [89Zr]11B6-PET/CT. Radiotracer uptake and expression of AR and AR target genes was quantified in resected tissue.EBRT increased AR pathway activity and [89Zr]11B6 uptake in LNCaP-AR and 22RV1 tumors. EBRT increased prostate-specific [89Zr]11B6 uptake in prostate cancer-bearing mice (Hi-Myc x Pb_KLK2) with no significant changes in uptake in healthy (Pb_KLK2) mice, and this correlated with hK2 protein levels. IMPLICATIONS: hK2 expression in prostate cancer tissue is a proxy of EBRT-induced AR activity that can noninvasively be detected using [89Zr]11B6-PET; further clinical evaluation of hK2-PET for monitoring response and development of resistance to EBRT in real time is warranted.


Asunto(s)
Neoplasias de la Próstata , Radioisótopos , Animales , Humanos , Masculino , Ratones , Línea Celular Tumoral , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/radioterapia , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Circonio
4.
Pharmaceutics ; 14(4)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35456565

RESUMEN

Prostate cancer (PC) is one of the most common malignancies affecting men, with poor prognosis after progression to metastatic castration-resistant prostate cancer (mCRPC). Radioligand therapy (RLT) targeting the overexpressed PSMA on PC cells, with, e.g., 177Lu-PSMA-617, has been effective in reducing tumor burden and prolonging survival in mCRPC. However, it is not a curative method with kidney and bone marrow toxicity limiting the activity given to patients. Previous preclinical models have reported transient hematotoxicity for up to 120 MBq. This activity may still be too low to investigate the effect on renal function since it corresponds to an absorbed dose below 10 Gy, whereas the kidneys in a clinical setting usually receive an absorbed dose more than double. Here we investigated the hematotoxicity and recovery after administered activities of 120, 160, and 200 MBq in a 177Lu-PSMA-617 BALB/cAnNRj mouse model. The animals had an initial drop in white blood cells (WBC) starting 4 days post injection, which recovered after 21 days. The effect on red blood cells (RBC) and platelets was detected later; 17 days post-injection levels decreased compared to the control group. The reduction was restored again 32 days post injection. No correlation between injected activity and hematotoxicity was found. Our results suggest that activities up to 200 MBq of 177Lu-PSMA-617 give transient hematotoxicity from which animals recover within a month and no radiation-related deaths. Injecting these high activities could allow animal studies with increased clinical relevance when studying renal toxicity in animal models.

5.
Pharmaceutics ; 13(11)2021 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-34834389

RESUMEN

Human epidermal growth factor receptor 2 (HER2) is a clinically validated target for breast cancer therapy. Previously, a drug-fused HER2-targeting affinity protein construct successfully extended the survival of mice bearing HER2-expressing xenografts. The aim of this study was to evaluate the influence of the number and positioning of the protein domains in the drug conjugate. Seven HER2-targeting affibody-based constructs, including one or two affibody molecules (Z) with or without an albumin-binding domain (ABD), namely Z, Z-ABD, ABD-Z, Z-Z, Z-Z-ABD, Z-ABD-Z, and ABD-Z-Z, were evaluated on their effects on cell growth, in vivo targeting, and biodistribution. The biodistribution study demonstrated that the monomeric constructs had longer blood retention and lower hepatic uptake than the dimeric ones. A dimeric construct, specifically ABD-Z-Z, could stimulate the proliferation of HER2 expressing SKOV-3 cells in vitro and the growth of tumors in vivo, whereas the monomeric construct Z-ABD could not. These two constructs demonstrated a therapeutic effect when coupled to mcDM1; however, the effect was more pronounced for the non-stimulating Z-ABD. The median survival of the mice treated with Z-ABD-mcDM1 was 63 days compared to the 37 days for those treated with ABD-Z-Z-mcDM1 or for the control animals. Domain permutation of an ABD-fused HER2-targeting affibody-based drug conjugate significantly influences tumor cell proliferation and therapy efficacy. The monomeric conjugate Z-ABD is the most promising format for targeted delivery of the cytotoxic drug DM1.

6.
Cancers (Basel) ; 13(14)2021 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-34298682

RESUMEN

BACKGROUND: The humanized monoclonal antibody (mAb) hu5A10 specifically targets and internalizes prostate cancer cells by binding to prostate specific antigen (PSA). Preclinical evaluations have shown that hu5A10 is an excellent vehicle for prostate cancer (PCa) radiotheranostics. We studied the impact of different chelates and conjugation ratios on hu5A10's target affinity, neonatal fc-receptor interaction on in vivo targeting efficacy, and possible enhanced therapeutic efficacy. METHODS: In our experiment, humanized 5A10 (hu5A10) was conjugated with DOTA or DTPA at a molar ratio of 3:1, 6:1, and 12:1. Surface plasmon resonance (SPR) was used to study antigen and FcRn binding to the antibody conjugates. [111In]hu5A10 radio-immunoconjugates were administered intravenously into BALB/c mice carrying subcutaneous LNCaP xenografts. Serial Single-photon emission computed tomography (SPECT) images were obtained during the first week. Tumors were harvested and radionuclide distribution was analyzed by autoradiography along with microanatomy and immunohistochemistry. RESULTS: As seen by SPR, the binding to PSA was clearly affected by the chelate-to-antibody ratio. Similarly, FcRn (neonatal fc-receptor) interacted less with antibodies conjugated at high ratios of chelator, which was more pronounced for DOTA conjugates. The autoradiography data indicated a higher distribution of radioactivity to the rim of the tumor for lower ratios and a more homogenous distribution at higher ratios. Mice injected with ratio 3:1 111In-DOTA-hu5A10 showed no significant difference in tumor volume when compared to mice given vehicle over a time period of 3 weeks. Mice given a similar injection of ratio 6:1 111In-DOTA-hu5A10 or 6:1 111In-DTPA-hu5A10 or 12:1 111In-DTPA-hu5A10 showed significant tumor growth retardation. Conclusions: The present study demonstrated that the radiolabeling strategy could positively modify the hu5A10's capacity to bind PSA and complex with the FcRn-receptor, which resulted in more homogenous activity distribution in tumors and enhanced therapy efficacy.

7.
Biomolecules ; 11(2)2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33579037

RESUMEN

Anti-prostate specific membrane antigen (PSMA) radioligand therapy is promising but not curative in castration resistant prostate cancer. One way to broaden the therapeutic index could be to administer higher doses in combination with radioprotectors, since administered radioactivity is kept low today in order to avoid side-effects from a high absorbed dose to healthy tissue. Here, we investigated the human radical scavenger α1-microglobulin (A1M) together with 177-Lutetium (177Lu) labeled PSMA-617 in preclinical models with respect to therapeutic efficacy and kidney toxicity. Nude mice with subcutaneous LNCaP xenografts were injected with 50 or 100 MBq of [177Lu]Lu-PSMA-617, with or without injections of recombinant A1M (rA1M) (at T = 0 and T = 24 h). Kidney absorbed dose was calculated to 7.36 Gy at 4 days post a 100 MBq injection. Activity distribution was imaged with Single-Photon Emission Computed Tomography (SPECT) at 24 h. Tumor volumes were measured continuously, and kidneys and blood were collected at termination (3-4 days and 3-4 weeks after injections). In a parallel set of experiments, mice were given [177Lu]Lu-PSMA-617 and rA1M as above and dynamic technetium-99m mercaptoacetyltriglycine ([99mTc]Tc-MAG3) SPECT imaging was performed prior to injection, and 3- and 6-months post injection. Blood and urine were continuously sampled. At termination (6 months) the kidneys were resected. Biomarkers of kidney function, expression of stress genes and kidney histopathology were analyzed. [177Lu]Lu-PSMA-617 uptake, in tumors and kidneys, as well as treatment efficacy did not differ between rA1M and vehicle groups. In mice given rA1M, [99mTc]Tc-MAG3 imaging revealed a significantly higher slope of initial uptake at three months compared to mice co-injected with [177Lu]Lu-PSMA-617 and vehicle. Little or no change compared to control was seen in urine albumin, serum/plasma urea levels, RT-qPCR analysis of stress response genes and in the kidney histopathological evaluation. In conclusion, [99mTc]Tc-MAG3 imaging presented itself as a sensitive tool to detect changes in kidney function revealing that administration of rA1M has a potentially positive effect on kidney perfusion and tubular function when combined with [177Lu]Lu-PSMA-617 therapy. Furthermore, we could show that rA1M did not affect anti-PSMA radioligand therapy efficacy.


Asunto(s)
alfa-Globulinas/metabolismo , Antioxidantes/química , Enfermedades Renales/metabolismo , Lutecio/química , Radioisótopos/química , Tecnecio Tc 99m Mertiatida/química , Animales , Línea Celular Tumoral , Dipéptidos , Compuestos Heterocíclicos con 1 Anillo , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Antígeno Prostático Específico , Radiometría , Radiofármacos , Tomografía Computarizada de Emisión de Fotón Único
8.
Clin Cancer Res ; 27(7): 2050-2060, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33441295

RESUMEN

PURPOSE: Most patients with prostate cancer treated with androgen receptor (AR) signaling inhibitors develop therapeutic resistance due to restoration of AR functionality. Thus, there is a critical need for novel treatment approaches. Here we investigate the theranostic potential of hu5A10, a humanized mAb specifically targeting free PSA (KLK3). EXPERIMENTAL DESIGN: LNCaP-AR (LNCaP with overexpression of wildtype AR) xenografts (NSG mice) and KLK3_Hi-Myc transgenic mice were imaged with 89Zr- or treated with 90Y- or 225Ac-labeled hu5A10; biodistribution and subcellular localization were analyzed by gamma counting, PET, autoradiography, and microscopy. Therapeutic efficacy of [225Ac]hu5A10 and [90Y]hu5A10 in LNCaP-AR tumors was assessed by tumor volume measurements, time to nadir (TTN), time to progression (TTP), and survival. Pharmacokinetics of [89Zr]hu5A10 in nonhuman primates (NHP) were determined using PET. RESULTS: Biodistribution of radiolabeled hu5A10 constructs was comparable in different mouse models. Specific tumor uptake increased over time and correlated with PSA expression. Treatment with [90Y]/[225Ac]hu5A10 effectively reduced tumor burden and prolonged survival (P ≤ 0.0054). Effects of [90Y]hu5A10 were more immediate than [225Ac]hu5A10 (TTN, P < 0.0001) but less sustained (TTP, P < 0.0001). Complete responses were observed in 7 of 18 [225Ac]hu5A10 and 1 of 9 mice [90Y]hu5A10. Pharmacokinetics of [89Zr]hu5A10 were consistent between NHPs and comparable with those in mice. [89Zr]hu5A10-PET visualized the NHP-prostate over the 2-week observation period. CONCLUSIONS: We present a complete preclinical evaluation of radiolabeled hu5A10 in mouse prostate cancer models and NHPs, and establish hu5A10 as a new theranostic agent that allows highly specific and effective downstream targeting of AR in PSA-expressing tissue. Our data support the clinical translation of radiolabeled hu5A10 for treating prostate cancer.


Asunto(s)
Partículas alfa/uso terapéutico , Partículas beta/uso terapéutico , Electrones/uso terapéutico , Antígeno Prostático Específico/inmunología , Neoplasias de la Próstata/radioterapia , Radioinmunoterapia/métodos , Animales , Modelos Animales de Enfermedad , Transferencia Lineal de Energía , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos BALB C , Tomografía de Emisión de Positrones , Antígeno Prostático Específico/metabolismo , Receptores Androgénicos/fisiología , Distribución Tisular
9.
Biomaterials ; 266: 120381, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33120197

RESUMEN

Molecular recognition in targeted therapeutics is typically based on immunoglobulins. Development of engineered scaffold proteins (ESPs) has provided additional opportunities for the development of targeted therapies. ESPs offer inexpensive production in prokaryotic hosts, high stability and convenient approaches to modify their biodistribution. In this study, we demonstrated successful modification of the biodistribution of an ESP known as ADAPT (Albumin-binding domain Derived Affinity ProTein). ADAPTs are selected from a library based on the scaffold of ABD (Albumin Binding Domain) of protein G. A particular ADAPT, the ADAPT6, binds to human epidermal growth factor receptor type 2 (HER2) with high affinity. Preclinical and early clinical studies have demonstrated that radiolabeled ADAPT6 can image HER2-expression in tumors with high contrast. However, its rapid glomerular filtration and high renal reabsorption have prevented its use in radionuclide therapy. To modify the biodistribution, ADAPT6 was genetically fused to an ABD. The non-covalent binding to the host's albumin resulted in a 14-fold reduction of renal uptake and appreciable increase of tumor uptake for the best variant, 177Lu-DOTA-ADAPT6-ABD035. Experimental therapy in mice bearing HER2-expressing xenografts demonstrated more than two-fold increase of median survival even after a single injection of 18 MBq 177Lu-DOTA-ADAPT6-ABD035. Thus, a fusion with ABD and optimization of the molecular design provides ADAPT derivatives with attractive targeting properties for radionuclide therapy.


Asunto(s)
Proteínas , Radioterapia , Receptor ErbB-2 , Albúminas , Animales , Línea Celular Tumoral , Ratones , Proteínas/metabolismo , Radioisótopos , Receptor ErbB-2/metabolismo , Distribución Tisular
10.
Sci Rep ; 10(1): 20777, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33247180

RESUMEN

Radionuclide molecular imaging of cancer-specific targets is a promising method to identify patients for targeted antibody therapy. Radiolabeled full-length antibodies however suffer from slow clearance, resulting in high background radiation. To overcome this problem, a pretargeting system based on complementary peptide nucleic acid (PNA) probes has been investigated. The pretargeting relies on sequential injections of primary, PNA-tagged antibody and secondary, radiolabeled PNA probe, which are separated in time, to allow for clearance of non-bound primary agent. We now suggest to include a clearing agent (CA), designed for removal of primary tumor-targeting agent from the blood. The CA is based on the antibody cetuximab, which was conjugated to PNA and lactosaminated by reductive amination to improve hepatic clearance. The CA was evaluated in combination with PNA-labelled trastuzumab, T-ZHP1, for radionuclide HER2 pretargeting. Biodistribution studies in normal mice demonstrated that the CA cleared ca. 7 times more rapidly from blood than unmodified cetuximab. Injection of the CA 6 h post injection of the radiolabeled primary agent [131I]I-T-ZHP1 gave a moderate reduction of the radioactivity concentration in the blood after 1 h from 8.5 ± 1.8 to 6.0 ± 0.4%ID/g. These proof-of-principle results could guide future development of a more efficient CA.


Asunto(s)
Anticuerpos Antineoplásicos/administración & dosificación , Anticuerpos Antineoplásicos/química , Inmunoconjugados/administración & dosificación , Inmunoconjugados/química , Ácidos Nucleicos de Péptidos/administración & dosificación , Ácidos Nucleicos de Péptidos/química , Radioinmunoterapia/métodos , Animales , Anticuerpos Antineoplásicos/metabolismo , Línea Celular Tumoral , Cetuximab/administración & dosificación , Cetuximab/sangre , Cetuximab/química , Femenino , Humanos , Inmunoconjugados/farmacocinética , Ratones , Sondas Moleculares/administración & dosificación , Sondas Moleculares/química , Sondas Moleculares/farmacocinética , Terapia Molecular Dirigida/métodos , Ácidos Nucleicos de Péptidos/farmacocinética , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/inmunología , Distribución Tisular , Trastuzumab/administración & dosificación , Trastuzumab/sangre , Trastuzumab/química
11.
Pharmaceutics ; 12(6)2020 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-32545760

RESUMEN

Human epidermal growth factor receptor 3 (HER3) has been increasingly scrutinized as a potential drug target since the elucidation of its role in mediating tumor growth and acquired therapy resistance. Affibody molecules are so-called scaffold proteins with favorable biophysical properties, such as a small size for improved tissue penetration and extravasation, thermal and chemical stability, and a high tolerance to modifications. Additionally, affibody molecules are efficiently produced in prokaryotic hosts or by chemical peptide synthesis. We have previously evaluated the biodistribution profiles of five mono- and bivalent anti-HER3 affibody molecules (designated as 3) fused to an albumin-binding domain (designated as A), 3A, 33A, 3A3, A33, and A3, that inhibit ligand-dependent phosphorylation. In the present study, we examined the therapeutic efficacy of the three most promising variants, 3A, 33A, and 3A3, in a direct comparison with the HER3-targeting monoclonal antibody seribantumab (MM-121) in a preclinical BxPC-3 pancreatic cancer model. Xenografted mice were treated with either an affibody construct or MM-121 and the tumor growth was compared to a vehicle group. Receptor occupancy was estimated by positron emission tomography/computed tomography (PET/CT) imaging using a HER3-targeting affibody imaging agent [68Ga]Ga-(HE)3-Z08698-NODAGA. The affibody molecules could inhibit ligand-dependent phosphorylation and cell proliferation in vitro and demonstrated tumor growth inhibition in vivo comparable to that of MM-121. PET/CT imaging showed full receptor occupancy for all tested drug candidates. Treatment with 3A and 3A3 affibody constructs was more efficient than with 33A and similar to the anti-HER3 antibody seribantumab, showing that the molecular design of affibody-based therapeutics targeting HER3 in terms of the relative position of functional domains and valency has an impact on therapeutic effect.

12.
Molecules ; 25(11)2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32526905

RESUMEN

Affibody molecules are the most studied class of engineered scaffold proteins (ESPs) in radionuclide molecular imaging. Attempts to use affibody molecules directly labelled with radiometals for targeted radionuclide therapy were hampered by the high uptake and retention of radioactivity in kidneys. Several promising strategies have been implemented to circumvent this problem. Here, we investigated whether a pharmacological approach targeting different components of the reabsorption system could be used to lower the uptake of [99mTc]Tc-ZHER:2395 affibody molecule in kidneys. Pre-injection of probenecid, furosemide, mannitol or colchicine had no influence on activity uptake in kidneys compared to the control group. Mice pre-injected with maleate and fructose had 33% and 51% reduction in the kidney-associated activity, respectively, compared to the control group. Autoradiography images showed that the accumulation of activity after [99mTc]Tc-ZHER2:2395 injection was in the renal cortex and that both maleate and fructose could significantly reduce it. Results from this study demonstrate that pharmacological intervention with maleate and fructose was effective in reducing the kidney uptake of affibody molecules. A presumable mechanism is the disruption of ATP-mediated cellular uptake and endocytosis processes of affibody molecules by tubular cells.


Asunto(s)
Quelantes/química , Fructosa/farmacología , Riñón/metabolismo , Maleatos/farmacología , Compuestos de Organotecnecio/farmacocinética , Radiofármacos/farmacocinética , Proteínas Recombinantes de Fusión/farmacocinética , Animales , Inhibidores Enzimáticos/farmacología , Femenino , Riñón/diagnóstico por imagen , Riñón/efectos de los fármacos , Ratones , Imagen Molecular , Compuestos de Organotecnecio/química , Cintigrafía , Radiofármacos/química , Proteínas Recombinantes de Fusión/química , Edulcorantes/farmacología , Distribución Tisular
13.
Int J Mol Sci ; 21(9)2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32392820

RESUMEN

Epithelial cell adhesion molecule (EpCAM) is overexpressed in 55%-75% of ovarian carcinomas (OC). EpCAM might be used as a target for a treatment of disseminated OC. Designed ankyrin repeats protein (DARPin) Ec1 is a small (18 kDa) protein, which binds to EpCAM with subnanomolar affinity. We tested a hypothesis that Ec1 labeled with a non-residualizing label might serve as a companion imaging diagnostic for stratification of patients for EpCAM-targeting therapy. Ec1 was labeled with 125I using N-succinimidyl-para-iodobenzoate. Binding affinity, specificity, and cellular processing of [125I]I-PIB-Ec1 were evaluated using SKOV-3 and OVCAR-3 ovarian carcinoma cell lines. Biodistribution and tumor-targeting properties of [125I]I-PIB-Ec1 were studied in Balb/c nu/nu mice bearing SKOV-3 and OVCAR-3 xenografts. EpCAM-negative Ramos lymphoma xenografts served as specificity control. Binding of [125I]I-PIB-Ec1 to ovarian carcinoma cell lines was highly specific and had affinity in picomolar range. Slow internalization of [125I]I-PIB-Ec1 by OC cells confirmed utility of non-residualizing label for in vivo imaging. [125I]I-PIB-Ec1 provided 6 h after injection tumor-to-blood ratios of 30 ± 11 and 48 ± 12 for OVCAR-3 and SKOV-3 xenografts, respectively, and high contrast to other organs. Tumor targeting was highly specific. Saturation of tumor uptake at a high dose of Ec1 in SKOV-3 model provided a rationale for dose selection in further studies using therapeutic conjugates of Ec1 for targeted therapy. In conclusion, [125I]I-PIB-Ec1 is a promising agent for visualizing EpCAM expression in OC.


Asunto(s)
Molécula de Adhesión Celular Epitelial/metabolismo , Radioisótopos de Yodo/química , Imagen Molecular/métodos , Neoplasias Ováricas/diagnóstico por imagen , Proteínas Recombinantes de Fusión/administración & dosificación , Animales , Línea Celular Tumoral , Estudios de Factibilidad , Femenino , Humanos , Ratones , Ratones Desnudos , Terapia Molecular Dirigida , Trasplante de Neoplasias , Neoplasias Ováricas/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/farmacocinética , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Distribución Tisular
14.
Pharmaceutics ; 12(4)2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32344762

RESUMEN

The human epidermal growth factor receptor 2 (HER2) is a clinically validated target for cancer therapy, and targeted therapies are often used in regimens for patients with a high HER2 expression level. Despite the success of current drugs, a number of patients succumb to their disease, which motivates development of novel drugs with other modes of action. We have previously shown that an albumin binding domain-derived affinity protein with specific affinity for HER2, ADAPT6, can be used to deliver the highly cytotoxic protein domain PE25, a derivative of Pseudomonas exotoxin A, to HER2 overexpressing malignant cells, leading to potent and specific cell killing. In this study we expanded the investigation for an optimal targeting domain and constructed two fusion toxins where a HER2-binding affibody molecule, ZHER2:2891, or the dual-HER2-binding hybrid ZHER2:2891-ADAPT6 were used for cancer cell targeting. We found that both targeting domains conferred strong binding to HER2; both to the purified extracellular domain and to the HER2 overexpressing cell line SKOV3. This resulted in fusion toxins with high cytotoxic potency toward cell lines with high expression levels of HER2, with EC50 values between 10 and 100 pM. For extension of the plasma half-life, an albumin binding domain was also included. Intravenous injection of the fusion toxins into mice showed a profound influence of the targeting domain on biodistribution. Compared to previous results, with ADAPT6 as targeting domain, ZHER2:2891 gave rise to further extension of the plasma half-life and also shifted the clearance route of the fusion toxin from the liver to the kidneys. Collectively, the results show that the targeting domain has a major impact on uptake of PE25-based fusion toxins in different organs. The results also show that PE25-based fusion toxins with high affinity to HER2 do not necessarily increase the cytotoxicity beyond a certain point in affinity. In conclusion, ZHER2:2891 has the most favorable characteristics as targeting domain for PE25.

15.
Methods Mol Biol ; 2105: 283-304, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32088878

RESUMEN

Affibody molecules are small engineered scaffold proteins suitable for in vivo tumor targeting. Radionuclide molecular imaging using directly radiolabelled affibody molecules provides excellent imaging. However, affibody molecules have a high renal reabsorption, which complicates their use for radionuclide therapy. The high renal reabsorption is a common problem for the use of engineered scaffold proteins for radionuclide therapy. Affibody-based PNA-mediated pretargeting reduces dramatically the absorbed dose to the kidneys and makes affibody-based radionuclide therapy possible. This methodology might, hopefully, solve the problem of high renal reabsorption for radionuclide therapy mediated by other engineered scaffold proteins.


Asunto(s)
Marcación de Gen , Ácidos Nucleicos de Péptidos/administración & dosificación , Proteínas Recombinantes de Fusión , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Expresión Génica , Humanos , Marcaje Isotópico , Imagen Molecular , Sondas Moleculares , Hibridación de Ácido Nucleico , Ácidos Nucleicos de Péptidos/síntesis química , Ácidos Nucleicos de Péptidos/química , Ácidos Nucleicos de Péptidos/aislamiento & purificación , Proteínas Recombinantes de Fusión/química , Técnicas de Síntesis en Fase Sólida
16.
EJNMMI Res ; 10(1): 7, 2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32020413

RESUMEN

BACKGROUND: Designed ankyrin repeat proteins (DARPins) are small engineered scaffold proteins (14-18 kDa) that demonstrated promising tumor-targeting properties in preclinical studies. However, high renal accumulation of activity for DARPins labeled with residualizing labels is a limitation for targeted radionuclide therapy. A better understanding of the mechanisms behind the kidney uptake of DARPins could aid the development of strategies to reduce it. In this study, we have investigated whether the renal uptake of [99mTc]Tc(CO)3-G3 DARPin could be reduced by administration of compounds that act on various parts of the reabsorption system in the kidney. RESULTS: Co-injection of lysine or Gelofusine was not effective for the reduction of kidney uptake of [99mTc]Tc(CO)3-G3. Administration of sodium maleate before the injection of [99mTc]Tc(CO)3-G3 reduced the kidney-associated activity by 60.4 ± 10.3%, while administration of fructose reduced it by 46.9 ± 7.6% compared with the control. The decrease in the kidney uptake provided by sodium maleate was also observed for [99mTc]Tc(CO)3-9_29 DARPin. Preinjection of colchicine, probenecid, mannitol, or furosemide had no effect on the kidney uptake of [99mTc]Tc(CO)3-G3. Kidney autoradiography showed mainly cortical accumulation of activity for all studied groups. CONCLUSION: Common clinical strategies were not effective for the reduction of kidney uptake of [99mTc]Tc(CO)3-G3. Both fructose and maleate lower the cellular ATP level in the proximal tubule cells and their reduction of the kidney reuptake indicates the involvement of an ATP-driven uptake mechanism. The decrease provided by maleate for both G3 and 9_29 DARPins indicates that their uptake proceeds through a mechanism independent of DARPin structure and binding site composition.

17.
Cancers (Basel) ; 11(8)2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31416167

RESUMEN

Affibody molecules are small affinity-engineered scaffold proteins which can be engineered to bind to desired targets. The therapeutic potential of using an affibody molecule targeting HER2, fused to an albumin-binding domain (ABD) and conjugated with the cytotoxic maytansine derivate MC-DM1 (AffiDC), has been validated. Biodistribution studies in mice revealed an elevated hepatic uptake of the AffiDC, but histopathological examination of livers showed no major signs of toxicity. However, previous clinical experience with antibody drug conjugates have revealed a moderate- to high-grade hepatotoxicity in treated patients, which merits efforts to also minimize hepatic uptake of the AffiDCs. In this study, the aim was to reduce the hepatic uptake of AffiDCs and optimize their in vivo targeting properties. We have investigated if incorporation of hydrophilic glutamate-based spacers adjacent to MC-DM1 in the AffiDC, (ZHER2:2891)2-ABD-MC-DM1, would counteract the hydrophobic nature of MC-DM1 and, hence, reduce hepatic uptake. Two new AffiDCs including either a triglutamate-spacer-, (ZHER2:2891)2-ABD-E3-MC-DM1, or a hexaglutamate-spacer-, (ZHER2:2891)2-ABD-E6-MC-DM1 next to the site of MC-DM1 conjugation were designed. We radiolabeled the hydrophilized AffiDCs and compared them, both in vitro and in vivo, with the previously investigated (ZHER2:2891)2-ABD-MC-DM1 drug conjugate containing no glutamate spacer. All three AffiDCs demonstrated specific binding to HER2 and comparable in vitro cytotoxicity. A comparative biodistribution study of the three radiolabeled AffiDCs showed that the addition of glutamates reduced drug accumulation in the liver while preserving the tumor uptake. These results confirmed the relation between DM1 hydrophobicity and liver accumulation. We believe that the drug development approach described here may also be useful for other affinity protein-based drug conjugates to further improve their in vivo properties and facilitate their clinical translatability.

18.
Int J Oncol ; 55(1): 309-319, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31180549

RESUMEN

Fusion toxins consisting of an affinity protein fused to toxic polypeptides derived from Pseudomonas exotoxin A (ETA) are promising agents for targeted cancer therapy. In this study, we examined whether fusion toxins consisting of an albumin binding domain­derived affinity protein (ADAPT) interacting with human epidermal growth factor receptor 2 (HER2), coupled to the ETA­derived polypeptides PE38X8 or PE25, with or without an albumin binding domain (ABD) for half­life extension, can be used for specific killing of HER2­expressing cells. The fusion toxins could easily be expressed in a soluble form in Escherichia coli and purified to homogeneity. All constructs had strong affinity for HER2 (KD 10 to 26 nM) and no tendency for aggregation could be detected. The fusion toxins including the ABD showed strong interaction with human and mouse serum albumin [equilibrium dissociation constant (KD) 1 to 3 nM and 2 to 10 nM, respectively]. The in vitro investigation of the cytotoxic potential revealed IC50­values in the picomolar range for cells expressing high levels of HER2. The specificity was also demonstrated, by showing that free HER2 receptors on the target cells are required for fusion toxin activity. In mice, the fusion toxins containing the ABD exhibited an appreciably longer time in circulation. The uptake was highest in liver and kidney. Fusion with PE25 was associated with the highest hepatic uptake. Collectively, the results suggest that fusion toxins consisting of ADAPTs and ETA­derivatives are promising agents for targeted cancer therapy.


Asunto(s)
ADP Ribosa Transferasas/administración & dosificación , Toxinas Bacterianas/administración & dosificación , Exotoxinas/administración & dosificación , Neoplasias/tratamiento farmacológico , Receptor ErbB-2/metabolismo , Proteínas Recombinantes de Fusión/administración & dosificación , Factores de Virulencia/administración & dosificación , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/farmacocinética , Albúminas/administración & dosificación , Albúminas/química , Animales , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/farmacocinética , Línea Celular Tumoral , Exotoxinas/química , Exotoxinas/genética , Exotoxinas/farmacocinética , Femenino , Humanos , Ratones , Neoplasias/metabolismo , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/farmacocinética , Unión Proteica , Dominios Proteicos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/farmacocinética , Resonancia por Plasmón de Superficie , Distribución Tisular , Factores de Virulencia/química , Factores de Virulencia/genética , Factores de Virulencia/farmacocinética , Exotoxina A de Pseudomonas aeruginosa
19.
Eur J Pharm Biopharm ; 140: 109-120, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31082509

RESUMEN

Radionuclide molecular imaging is a promising tool that becomes increasingly important as targeted cancer therapies are developed. To ensure an effective treatment, a molecular stratification of the cancer is a necessity. To accomplish this, visualization of cancer associated molecular abnormalities in vivo by molecular imaging is the method of choice. ADAPTs, a novel type of small protein scaffold, have been utilized to select and develop high affinity binders to different proteinaceous targets. One of these binders, ADAPT6 selectively interacts with human epidermal growth factor 2 (HER2) with low nanomolar affinity and can therefore be used for its in vivo visualization. Molecular design and optimization of labeled anti-HER2 ADAPT has been explored in several earlier studies, showing that small changes in the scaffold affect the biodistribution of the domain. In this study, we evaluate how the biodistribution properties of ADAPT6 is affected by the commonly used maleimido derivatives of the macrocyclic chelators NOTA, NODAGA, DOTA and DOTAGA with the aim to select the best variants for SPECT and PET imaging. The different conjugates were labeled with 111In for SPECT and 68Ga for PET. The acquired data show that the combination of a radionuclide and a chelator for its conjugation has a strong influence on the uptake of ADAPT6 in normal tissues and thereby gives a significant variation in tumor-to-organ ratios. Hence, it was concluded that the best variant for SPECT imaging is 111In-(HE)3DANS-ADAPT6-GSSC-DOTA while the best variant for PET imaging is 68Ga-(HE)3DANS-ADAPT6-GSSC-NODAGA.


Asunto(s)
Quelantes/química , Radioisótopos de Galio/química , Radioisótopos de Indio/química , Compuestos Macrocíclicos/química , Proteínas/metabolismo , Cintigrafía/métodos , Receptor ErbB-2/metabolismo , Línea Celular Tumoral , Humanos , Marcaje Isotópico/métodos , Imagen Molecular/métodos , Tomografía de Emisión de Positrones/métodos , Distribución Tisular/efectos de los fármacos , Tomografía Computarizada de Emisión de Fotón Único/métodos
20.
Int J Cancer ; 145(12): 3347-3358, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31077356

RESUMEN

Gastrin-releasing peptide receptors (GRPRs) are overexpressed in prostate cancer and are suitable for targeted radionuclide therapy (TRT). We optimized the bombesin-derived GRPR-antagonist PEG2 -RM26 for labeling with 177 Lu and further determined the effect of treatment with 177 Lu-labeled peptide alone or in combination with the anti-HER2 antibody trastuzumab in a murine model. The PEG2 -RM26 analog was coupled to NOTA, NODAGA, DOTA and DOTAGA chelators. The peptide-chelator conjugates were labeled with 177 Lu and characterized in vitro and in vivo. A preclinical therapeutic study was performed in PC-3 xenografted mice. Mice were treated with intravenous injections (6 cycles) of (A) PBS, (B) DOTAGA-PEG2 -RM26, (C) 177 Lu-DOTAGA-PEG2 -RM26, (D) trastuzumab or (E) 177 Lu-DOTAGA-PEG2 -RM26 in combination with trastuzumab. 177 Lu-DOTAGA-PEG2 -RM26 demonstrated quantitative labeling yield at high molar activity (450 GBq/µmol), high in vivo stability (5 min pi >98% of radioligand remained when coinjected with phosphoramidon), high affinity to GRPR (KD = 0.4 ± 0.2 nM), and favorable biodistribution (1 hr pi tumor uptake was higher than in healthy tissues, including the kidneys). Therapy with 177 Lu-DOTAGA-PEG2 -RM26 induced a significant inhibition of tumor growth. The median survival for control groups was significantly shorter than for treated groups (Group C 66 days, Group E 74 days). Trastuzumab together with radionuclide therapy significantly improved survival. No treatment-related toxicity was observed. In conclusion, based on in vitro and in vivo characterization of the four 177 Lu-labeled PEG2 -RM26 analogs, we concluded that 177 Lu-DOTAGA-PEG2 -RM26 was the most promising analog for TRT. Radiotherapy using 177 Lu-DOTAGA-PEG2 -RM26 effectively inhibited tumor growth in vivo in a murine prostate cancer model. Anti-HER2 therapy additionally improved survival.


Asunto(s)
Antineoplásicos/farmacología , Lutecio/química , Polietilenglicoles/química , Neoplasias de la Próstata/tratamiento farmacológico , Radioisótopos/química , Receptores de Bombesina/antagonistas & inhibidores , Trastuzumab/farmacología , Animales , Antineoplásicos/química , Línea Celular Tumoral , Terapia Combinada/métodos , Xenoinjertos/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células PC-3 , Próstata/efectos de los fármacos , Distribución Tisular/fisiología , Proteína Tumoral Controlada Traslacionalmente 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA