Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Physiol Plant ; 176(4): e14457, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108053

RESUMEN

The increasing prevalence of drought events poses a major challenge for upcoming crop production. Melatonin is a tiny indolic tonic substance with fascinating regulatory functions in plants. While plants can respond in several ways to alleviate drought stress, the processes underpinning stress sensing and signaling are poorly understood. Hereafter, the objectives of this investigation were to explore the putative functions of melatonin in the regulation of sugar metabolism and abscisic acid biosynthesis in drought-stressed tomato seedlings. Melatonin (100 µM) and/or water were foliar sprayed, followed by the plants being imposed to drought stress for 14 days. Drought stress significantly decreased biomass accumulation, inhibited photosynthetic activity, and stimulated senescence-associated gene 12 (SAG12) expression. Melatonin treatment effectively reversed drought-induced growth retardation as evidenced by increased leaf pigment and water balance and restricted abscisic acid (ABA) accumulation. Sugar accumulation, particularly sucrose content, was higher in drought-imposed seedlings, possibly owing to higher transcription levels of sucrose non-fermenting 1-related protein kinase 2 (SnKR2.2) and ABA-responsive element binding factors 2 (AREB2). Melatonin addition further uplifted the sucrose content, which coincided with increased activity of sucrose synthase (SS, 130%), sucrose phosphate synthase (SPS, 137%), starch degradation encoding enzyme ß-amylase (BAM, 40%) and α-amylase (AMY, 59%) activity and upregulated their encoding BAM1(10.3 folds) and AMY3 (8.1 folds) genes expression at day 14 relative to the control. Under water deficit conditions, melatonin supplementation decreased the ABA content (24%) and its biosynthesis gene expressions. Additionally, sugar transporter subfamily genes SUT1 and SUT4 expression were upregulated by the addition of melatonin. Collectively, our findings illustrate that melatonin enhances drought tolerance in tomato seedlings by stimulating sugar metabolism and negatively regulating ABA synthesis.


Asunto(s)
Ácido Abscísico , Sequías , Regulación de la Expresión Génica de las Plantas , Melatonina , Plantones , Solanum lycopersicum , Sacarosa , Ácido Abscísico/metabolismo , Melatonina/farmacología , Melatonina/metabolismo , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Solanum lycopersicum/metabolismo , Plantones/efectos de los fármacos , Plantones/genética , Plantones/fisiología , Plantones/metabolismo , Sacarosa/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Hojas de la Planta/genética , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética
2.
Plants (Basel) ; 13(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39124266

RESUMEN

Few researches have explored the production of pharmaceuticals from aquatic plants. Therefore, this study explored, for the first time, the phytochemical composition and bioactivities of ten aquatic plants. Aquatic plant shoots from various Nile River canals were collected, dried, and ground for aqueous extract preparation. Phytochemical composition and antioxidant capacity were assessed using DPPH assays. Extracts were tested for antiparasitic, antibacterial, anti-biofilm, and anticancer activities through standard in vitro assays, measuring IC50 values, and evaluating mechanisms of action, including cell viability and high-content screening assays. The results showed that the aquatic plants were rich in pharmaceutical compounds. The antioxidant capacity of these extracts exceeded that of vitamin C. The extracts showed promising antiparasitic activity against pathogens like Opisthorchis viverrini and Plasmodium falciparum, with IC50 values between 0.7 and 2.5 µg/mL. They also demonstrated low MICs against various pathogenic bacteria, causing DNA damage, increased plasma membrane permeability, and 90% biofilm inhibition. In terms of anticancer activity, extracts were effective against a panel of cancer cell lines, with Ludwigia stolonifera exhibiting the highest efficacy. Its IC50 ranged from 0.5 µg/mL for pancreatic, esophageal, and colon cancer cells to 1.5 µg/mL for gastric cancer cells. Overall, IC50 values for all extracts were below 6 µg/mL, showing significant apoptotic activity, increased nuclear intensity, plasma membrane permeability, mitochondrial membrane permeability, and cytochrome c release, and outperforming doxorubicin. This study highlights the potential of aquatic plants as sources for new, safe, and effective drugs with strong antiparasitic, antibacterial, and anticancer properties.

3.
Plants (Basel) ; 12(9)2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37176963

RESUMEN

Laccase-like multi-copper oxidases (LMCOs) are a group of enzymes involved in the oxidation of numerous substrates. Recently, these enzymes have become extremely popular due to their practical applications in various fields of biology. LMCOs generally oxidize various substrates by linking four-electron reduction of the final acceptor, molecular oxygen (O2), to water. Multi-copper oxidases related to laccase are extensively distributed as multi-gene families in the genome sequences of higher plants. The current study thoroughly investigated the LMCO gene family (Br-Lac) and its expression pattern under various abiotic stresses in B. rapa L. A total of 18 Br-Lac gene family members located on five different chromosomes were identified. Phylogenetic analysis classified the documented Br-Lac genes into seven groups: Group-I (four genes), Group-II (nine genes), Group-III (eight genes), Group-IV (four genes), Group-V (six genes), and Group-VI and Group-VII (one gene each). The key features of gene structure and responsive motifs shared the utmost resemblance within the same groups. Additionally, a divergence study also assessed the evolutionary features of Br-Lac genes. The anticipated period of divergence ranged from 12.365 to 39.250 MYA (million years ago). We also identified the pivotal role of the 18 documented members of the LMCO (Br-lac) gene family using quantitative real-time qRT-PCR. Br-Lac-6, Br-Lac-7, Br-Lac-8, Br-Lac-16, Br-Lac-17, and Br-Lac-22 responded positively to abiotic stresses (i.e., drought, heat, and salinity). These findings set the stage for the functional diversity of the LMCO genes in B. rapa.

4.
Genes (Basel) ; 13(9)2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-36140688

RESUMEN

Alfalfa (Medicago sativa L.) is one of the most important perennial forage crops to build effective diets for livestock producers. Forage crop improvement depends largely on the availability of diverse germplasms and their efficient utilization. The present investigation was conducted at Ismailia Agricultural Research Station to assess twenty-one alfalfa genotypes for yield components, forage yield and quality traits during 2019/2020 and 2020/2021. The genotypes were evaluated in field experiments with three replicates and a randomized complete block design, using analysis of variance, estimate of genetic variability, estimate of broad sense heritability (hb2) and cluster analysis to identify the inter relationships among the studied genotypes as well as principal component analysis (PCA) to explain the majority of the total variation. Significant differences were found among genotypes for all studied traits. The general mean of the studied traits was higher in the second year than the first year. Moreover, the combined analysis showed highly significant differences between the two years, genotypes and the year × gen. interaction for the traits studied. The genotype F18 recorded the highest values for plant height, number of tiller/m2, total fresh yield and total dry yield, while, the genotype F49 ranked first for leaf/stem ratio. The results showed highly significant variation among the studied genotypes for crude protein %, crude fiber % and ash %. Data revealed that the genotypes P13 and P5 showed the highest values for crude protein %, whereas, the genotype F18 recorded the highest values for crude fiber % and ash content. The results revealed high estimates of genotypic coefficient and phenotypic coefficient of variation (GCV% and PCV%) with high hb2, indicating the presence of genetic variability and effective potential selection for these traits. The cluster analysis exhibited considerable genetic diversity among the genotypes, which classified the twenty one genotypes of alfalfa into five sub-clusters. The genotypes F18, F49, K75, S35, P20, P5 and P13 recorded the highest values for all studied traits compared with other clusters. Furthermore, the PC analysis grouped the studied genotypes into groups and remained scattered in all four quadrants based on all studied traits. Ultimately, superior genotypes were identified can be utilized for crop improvement in future breeding schemes.


Asunto(s)
Variación Genética , Medicago sativa , Variación Genética/genética , Genotipo , Medicago sativa/genética , Fenotipo , Fitomejoramiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA