Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Adv Mater ; : e2404618, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38853427

RESUMEN

Photocatalytic solar hydrogen generation, encompassing both overall water splitting and organic reforming, presents a promising avenue for green hydrogen production. This technology holds the potential for reduced capital costs in comparison to competing methods like photovoltaic-electrocatalysis and photoelectrocatalysis, owing to its simplicity and fewer auxiliary components. However, the current solar-to-hydrogen efficiency of photocatalytic solar hydrogen production has predominantly remained low at ≈1-2% or lower, mainly due to curtailed access to the entire solar spectrum, thus impeding practical application of photocatalytic solar hydrogen production. This review offers an integrated, multidisciplinary perspective on photocatalytic solar hydrogen production. Specifically, the review presents the existing approaches in photocatalyst and system designs aimed at significantly boosting the solar-to-hydrogen efficiency, while also considering factors of cost and scalability of each approach. In-depth discussions extending beyond the efficacy of material and system design strategies are particularly vital to identify potential hurdles in translating photocatalysis research to large-scale applications. Ultimately, this review aims to provide understanding and perspective of feasible pathways for commercializing photocatalytic solar hydrogen production technology, considering both engineering and economic standpoints.

2.
Angew Chem Int Ed Engl ; : e202401746, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38757221

RESUMEN

Over 79 % of 6.3 billion tonnes of plastics produced from 1950 to 2015 have been disposed in landfills or found their way to the oceans, where they will reside for up to hundreds of years before being decomposed bringing upon significant dangers to our health and ecosystems. Plastic photoreforming offers an appealing alternative by using solar energy and water to transform plastic waste into value-added chemical commodities, while simultaneously producing green hydrogen via the hydrogen evolution reaction. This review aims to provide an overview of the underlying principles of emerging plastic photoreforming technologies, highlight the challenges associated with experimental protocols and performance assessments, discuss recent global breakthroughs on the photoreforming of plastics, and propose perspectives for future research. A critical assessment of current plastic photoreforming studies shows a lack of standardised conditions, hindering comparison amongst photocatalyst performance. Guidelines to establish a more accurate evaluation of materials and systems are proposed, with the aim to facilitate the translation of promising fundamental discovery in photocatalysts design.

3.
Small ; : e2401333, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602227

RESUMEN

Amidst these growing sustainability concerns, producing NH4 + via electrochemical NO3 - reduction reaction (NO3RR) emerges as a promising alternative to the conventional Haber-Bosch process. In a pioneering approach, this study introduces Ru incorporation into Co3O4 lattices at the nanoscale and further couples it with electroreduction conditioning (ERC) treatment as a strategy to enhance metal oxide reducibility and induce oxygen vacancies, advancing NH4 + production from NO3RR. Here, supported by a suite of ex situ and in situ characterization measurements, the findings reveal that Ru enrichment promotes Co species reduction and oxygen vacancy formation. Further, as evidenced by the theoretical calculations, Ru integration lowers the energy barrier for oxygen vacancy formation, thereby facilitating a more energy-efficient NO3RR-to-NH4 + pathway. Optimal catalytic activity is realized with a Ru loading of 10 at.% (named 10Ru/Co3O4), achieving a high NH4 + production rate (98 nmol s-1 cm-2), selectivity (97.5%) and current density (≈100 mA cm-2) at -1.0 V vs RHE. The findings not only provide insights into defect engineering via the incorporation of secondary sites but also lay the groundwork for innovative catalyst design aimed at improving NH4 + yield from NO3RR. This research contributes to the ongoing efforts to develop sustainable electrochemical processes for nitrogen cycle management.

4.
Pharmaceutics ; 16(3)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38543317

RESUMEN

The therapeutic application of biofunctional proteins relies on their intracellular delivery, which is hindered by poor cellular uptake and transport from endosomes to cytoplasm. Herein, we constructed a two-dimensional (2D) ultrathin layered double hydroxide (LDH) nanosheet for the intracellular delivery of a cell-impermeable protein, gelonin, towards efficient and specific cancer treatment. The LDH nanosheet was synthesized via a facile method without using exfoliation agents and showed a high loading capacity of proteins (up to 182%). Using 2D and 3D 4T1 breast cancer cell models, LDH-gelonin demonstrated significantly higher cellular uptake efficiency, favorable endosome escape ability, and deep tumor penetration performance, leading to a higher anticancer efficiency, in comparison to free gelonin. This work provides a promising strategy and a generalized nanoplatform to efficiently deliver biofunctional proteins to unlock their therapeutic potential for cancer treatment.

5.
Adv Mater ; 36(23): e2314077, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38390785

RESUMEN

Conventional H2-O2 fuel cells suffer from the low output voltage, insufficient durability, and high-cost catalysts (e.g., noble metals). Herein, this work reports a conceptually new coupled flow fuel cell (CF-FC) by coupling asymmetric electrolytes for acidic oxygen reduction reaction and alkaline hydrogen oxidation reaction. By introducing an electrochemical neutralization energy, the newly-developed CF-FCs possess a significantly increased theoretical open-circuit voltage. Specifically, a CF-FC based on a typical transition metal single-atom Fe-N-C cathode catalyst demonstrates a high electricity output up to 1.81 V and durability with an ultrahigh retention of 91% over 110 h, far superior to the conventional fuel cells (usually, < 1.0 V, < 50% retention over 20 h). The output performance can even be significantly enhanced easily by connecting multiple CF-FCs into the parallel, series, or combined parallel-series connections at a fractional cost of that for the conventional H2-O2 fuel cells, showing great potential for large-scale practical applications. Thus, this study provides a platform to transform conventional fuel cell technology through the rational design and development of advanced energy conversion and storage devices by coupling different electrocatalytic reactions.

6.
Environ Int ; 185: 108512, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38412566

RESUMEN

BACKGROUND: Sporadic Alzheimer's disease (AD) occurs in 99% of all cases and can be influenced by air pollution such as diesel emissions and more recently, an iron oxide particle, magnetite, detected in the brains of AD patients. However, a mechanistic link between air pollutants and AD development remains elusive. AIM: To study the development of AD-relevant pathological effects induced by air pollutant particle exposures and their mechanistic links, in wild-type and AD-predisposed models. METHODS: C57BL/6 (n = 37) and APP/PS1 transgenic (n = 38) mice (age 13 weeks) were exposed to model pollutant iron-based particle (Fe0-Fe3O4, dTEM = 493 ± 133 nm), hydrocarbon-based diesel combustion particle (43 ± 9 nm) and magnetite (Fe3O4, 153 ± 43 nm) particles (66 µg/20 µL/third day) for 4 months, and were assessed for behavioural changes, neuronal cell loss, amyloid-beta (Aß) plaque, immune response and oxidative stress-biomarkers. Neuroblastoma SHSY5Y (differentiated) cells were exposed to the particles (100 µg/ml) for 24 h, with assessments on immune response biomarkers and reactive oxygen species generation. RESULTS: Pollutant particle-exposure led to increased anxiety and stress levels in wild-type mice and short-term memory impairment in AD-prone mice. Neuronal cell loss was shown in the hippocampal and somatosensory cortex, with increased detection of Aß plaque, the latter only in the AD-predisposed mice, with the wild-type not genetically disposed to form the plaque. The particle exposures however, increased AD-relevant immune system responses, including inflammation, in both strains of mice. Exposures also stimulated oxidative stress, although only observed in wild-type mice. The in vitro studies complemented the immune response and oxidative stress observations. CONCLUSIONS: This study provides insights into the mechanistic links between inflammation and oxidative stress to pollutant particle-induced AD pathologies, with magnetite apparently inducing the most pathological effects. No exacerbation of the effects was observed in the AD-predisposed model when compared to the wild-type, indicating a particle-induced neurodegeneration that is independent of disease state.


Asunto(s)
Contaminantes Atmosféricos , Enfermedad de Alzheimer , Humanos , Ratones , Animales , Lactante , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/patología , Contaminantes Atmosféricos/toxicidad , Óxido Ferrosoférrico/toxicidad , Ratones Endogámicos C57BL , Péptidos beta-Amiloides/toxicidad , Inflamación , Placa Amiloide , Biomarcadores , Modelos Animales de Enfermedad
7.
Small Methods ; 8(2): e2300427, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37712209

RESUMEN

Coupling the hydrogen evolution reaction with plastic waste photoreforming provides a synergistic path for simultaneous production of green hydrogen and recycling of post-consumer products, two major enablers for establishment of a circular economy. Graphitic carbon nitride (g-C3 N4 ) is a promising photocatalyst due to its suitable optoelectronic and physicochemical properties, and inexpensive fabrication. Herein, a mechanistic investigation of the structure-activity relationship of g-C3 N4 for poly(ethylene terephthalate) (PET) photoreforming is reported by carefully controlling its fabrication from a subset of earth-abundant precursors, such as dicyandiamide, melamine, urea, and thiourea. These findings reveal that melamine-derived g-C3 N4 with 3 wt.% Pt has significantly higher performance than alternative derivations, achieving a maximum hydrogen evolution rate of 7.33 mmolH2  gcat -1  h-1 , and simultaneously photoconverting PET into valuable organic products including formate, glyoxal, and acetate, with excellent stability for over 30 h of continuous production. This is attributed to the higher crystallinity and associated chemical resistance of melamine-derived g-C3 N4 , playing a major role in stabilization of its morphology and surface properties. These new insights on the role of precursors and structural properties in dictating the photoactivity of g-C3 N4 set the foundation for the further development of photocatalytic processes for combined green hydrogen production and plastic waste reforming.

8.
ACS Appl Mater Interfaces ; 15(39): 46247-46260, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37738302

RESUMEN

Bioinspired nanotopography artificially fabricated on titanium surfaces offers a solution for the rising issue of postoperative infections within orthopedics. On a small scale, hydrothermal etching has proven to deliver an effective antimicrobial nanospike surface. However, translation to an industrial setting is limited by the elevated synthesis temperature (150 °C) and associated equipment requirements. Here, for the first time, we fabricate surface nanostructures using comparatively milder synthesis temperatures (75 °C), which deliver physicochemical properties and antimicrobial capability comparable to the high-temperature surface. Using a KOH etchant, the simultaneous formation of titania and titanate crystals at both temperatures produces a one-dimensional nanostructure array. Analysis indicated that the formation mechanism comprises dissolution and reprecipitation processes, identifying the deposited titanates as hydrated layered tetra-titanates (K2Ti4O9·nH2O). A proposed nanospike formation mechanism was confirmed through the identification of a core and outer shell for individual nanostructures, primarily comprised of titanates and titania, respectively. Etching conditions dictated crystalline formation, favoring a thicker titanate core for nanorods under higher synthesis temperatures and etchant concentrations. A bactericidal investigation showed the efficacy against Gram-negative bacteria for a representative low-temperature nanosurface (34.4 ± 14.4%) was comparable to the higher temperature nanosurface (34.0 ± 17.0%), illustrating the potential of low-temperature hydrothermal synthesis. Our results provide valuable insight into the applicability of low-temperature etching protocols that are more favorable in large-scale manufacturing settings.

9.
Sci Total Environ ; 898: 166375, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37598967

RESUMEN

Photoelectrochemical oxidation (PECO) is a promising advanced technology for treating micropollutants in stormwater. However, it is important to understand its operation prior to practical validation. In this study, we introduced a flow PECO system designed to evaluate its potential for full-scale applications in herbicides degradation, providing valuable insights for future large-scale implementations. The PECO flow reactor demonstrated the ability to treat a larger volume of stormwater (675 mL, approximately 10 times more than previous batch experiments) with effective removal rates of 92 % for diuron and 22 % for atrazine over 6 h of operation at 2 V. To address the large volume issue in stormwater treatment, a multiple module parallel application design is being considered to increase the treatment capacity of the PECO flow reactor. During the flow reactor operations, flow rate was found to have a notable impact on removal performance, particularly for diuron. At a flow rate of 610 mL min-1, approximately 90 % removal of diuron was achieved, while at 29 mL min-1, the removal efficiency decreased to 60 %. While light intensity had minimal effect on diuron degradation (all settings achieved over 90 % removal), it enhanced atrazine degradation from 9 % to 31 % with an increase in intensity from 63 mW cm-2 to 144 mW cm-2. Remarkably, the PECO flow system exhibited excellent removal performance (>90 % removal) for diuron even at extremely high initial pollutant concentrations (240 µg L-1), demonstrating its capacity to handle varying contaminant loads in stormwater. Energy consumption analysis revealed that flow rate as the primary factor influenced the specific energy consumption rate. Higher flow rate (e.g., 610 mL min-1) were preferable in flow reactor due to its well-balanced performance between removal and energy consumption. These findings confirm that the PECO flow system offers an efficient and promising approach for stormwater treatment applications.

11.
Small ; 19(40): e2302338, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37267930

RESUMEN

Electrochemical synthesis of hydrogen peroxide (H2 O2 ) through the selective oxygen reduction reaction (ORR) offers a promising alternative to the energy-intensive anthraquinone method, while its success relies largely on the development of efficient electrocatalyst. Currently, carbon-based materials (CMs) are the most widely studied electrocatalysts for electrosynthesis of H2 O2 via ORR due to their low cost, earth abundance, and tunable catalytic properties. To achieve a high 2e- ORR selectivity, great progress is made in promoting the performance of carbon-based electrocatalysts and unveiling their underlying catalytic mechanisms. Here, a comprehensive review in the field is presented by summarizing the recent advances in CMs for H2 O2 production, focusing on the design, fabrication, and mechanism investigations over the catalytic active moieties, where an enhancement effect of defect engineering or heteroatom doping on H2 O2 selectivity is discussed thoroughly. Particularly, the influence of functional groups on CMs for a 2e- -pathway is highlighted. Further, for commercial perspectives, the significance of reactor design for decentralized H2 O2 production is emphasized, bridging the gap between intrinsic catalytic properties and apparent productivity in electrochemical devices. Finally, major challenges and opportunities for the practical electrosynthesis of H2 O2 and future research directions are proposed.

12.
Biomaterials ; 296: 122074, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36889145

RESUMEN

Incurable bacterial infection and intractable multidrug resistance remain critical challenges in public health. A prevalent approach against bacterial infection is phototherapy including photothermal and photodynamic therapy, which is unfortunately limited by low penetration depth of light accompanied with inevitable hyperthermia and phototoxicity damaging healthy tissues. Thus, eco-friendly strategy with biocompatibility and high antimicrobial efficacy against bacteria is urgently desired. Herein, we propose and develop an oxygen-vacancy-rich MoOxin situ on fluorine-free Mo2C MXene with unique neural-network-like structure, namely MoOx@Mo2C nanonetworks, in which their desirable antibacterial effectiveness originates from bacteria-capturing ability and robust reactive oxygen species (ROS) generation under precise ultrasound (US) irradiation. The high-performance, broad-spectrum microbicidal activity of MoOx@Mo2C nanonetworks without damaging normal tissues is validated based on systematic in vitro and in vivo assessments. Additionally, RNA sequencing analysis illuminates that the underlying bactericidal mechanism is attributed to the chaotic homeostasis and disruptive peptide metabolisms on bacteria instigated by MoOx@Mo2C nanonetworks under US stimulation. Considering antibacterial efficiency and a high degree of biosafety, we envision that the MoOx@Mo2C nanonetworks can serve as a distinct antimicrobial nanosystem to fight against diverse pathogenic bacteria, especially eradicating multidrug-resistant bacteria-induced deep tissue infection.


Asunto(s)
Infecciones Bacterianas , Hipertermia Inducida , Humanos , Oxígeno , Antibacterianos/farmacología , Antibacterianos/química , Molibdeno/farmacología , Molibdeno/química , Bacterias
13.
Small ; 19(25): e2208074, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36932896

RESUMEN

Unlocking the potential of the hydrogen economy is dependent on achieving green hydrogen (H2 ) production at competitive costs. Engineering highly active and durable catalysts for both oxygen and hydrogen evolution reactions (OER and HER) from earth-abundant elements is key to decreasing costs of electrolysis, a carbon-free route for H2 production. Here, a scalable strategy to prepare doped cobalt oxide (Co3 O4 ) electrocatalysts with ultralow loading, disclosing the role of tungsten (W), molybdenum (Mo), and antimony (Sb) dopants in enhancing OER/HER activity in alkaline conditions, is reported. In situ Raman and X-ray absorption spectroscopies, and electrochemical measurements demonstrate that the dopants do not alter the reaction mechanisms but increase the bulk conductivity and density of redox active sites. As a result, the W-doped Co3 O4 electrode requires ≈390 and ≈560 mV overpotentials to reach ±10 and ±100 mA cm-2 for OER and HER, respectively, over long-term electrolysis. Furthermore, optimal Mo-doping leads to the highest OER and HER activities of 8524 and 634 A g-1 at overpotentials of 0.67 and 0.45 V, respectively. These novel insights provide directions for the effective engineering of Co3 O4 as a low-cost material for green hydrogen electrocatalysis at large scales.

14.
Adv Mater ; 35(28): e2205814, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36813733

RESUMEN

Sluggish reaction kinetics and the undesired side reactions (hydrogen evolution reaction and self-reduction) are the main bottlenecks of electrochemical conversion reactions, such as the carbon dioxide and nitrate reduction reactions (CO2 RR and NO3 RR). To date, conventional strategies to overcome these challenges involve electronic structure modification and modulation of the charge-transfer behavior. Nonetheless, key aspects of surface modification, focused on boosting the intrinsic activity of active sites on the catalyst surface, are yet to be fully understood. Engingeering of oxygen vacancies (OVs) can tune surface/bulk electronic structure and improve surface active sites of electrocatalysts. The continuous breakthroughs and significant progress in the last decade position engineering of OVs as a potential technique for advancing electrocatalysis. Motivated by this, the state-of-the-art findings of the roles of OVs in both the CO2 RR and the NO3 RR are presented. The review starts with a description of approaches to constructing and techniques for characterizing OVs. This is followed by an overview of the mechanistic understanding of the CO2 RR and a detailed discussion on the roles of OVs in the CO2 RR. Then, insights into the NO3 RR mechanism and the potential of OVs on NO3 RR based on early findings are highlighted. Finally, the challenges in designing CO2 RR/NO3 RR electrocatalysts and perspectives in studying OV engineering are provided.

15.
ACS Nano ; 17(3): 2387-2398, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36727675

RESUMEN

Single-atom catalysts (SACs) have shown potential for achieving an efficient electrochemical CO2 reduction reaction (CO2RR) despite challenges in their synthesis. Here, Ag2S/Ag nanowires provide initial anchoring sites for Cu SACs (Cu/Ag2S/Ag), then Cu/Ag(S) was synthesized by an electrochemical treatment resulting in complete sulfur removal, i.e., Cu SACs on a defective Ag surface. The CO2RR Faradaic efficiency (FECO2RR) of Cu/Ag(S) reaches 93.0% at a CO2RR partial current density (jCO2RR) of 2.9 mA/cm2 under -1.0 V vs RHE, which outperforms sulfur-removed Ag2S/Ag without Cu SACs (Ag(S), 78.5% FECO2RR with 1.8 mA/cm2jCO2RR). At -1.4 V vs RHE, both FECO2RR and jCO2RR over Cu/Ag(S) reached 78.6% and 6.1 mA/cm2, which tripled those over Ag(S), respectively. As revealed by in situ and ex situ characterizations together with theoretical calculations, the interacted Cu SACs and their neighboring defective Ag surface increase microstrain and downshift the d-band center of Cu/Ag(S), thus lowering the energy barrier by ∼0.5 eV for *CO formation, which accounts for the improved CO2RR activity and selectivity toward related products such as CO and C2+ products.

16.
Angew Chem Int Ed Engl ; 62(4): e202210828, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36278885

RESUMEN

MXenes, due to their tailorable chemistry and favourable physical properties, have great promise in electrocatalytic energy conversion reactions. To exploit fully their enormous potential, further advances specific to electrocatalysis revolving around their performance, stability, compositional discovery and synthesis are required. The most recent advances in these aspects are discussed in detail: surface functional and stoichiometric modifications which can improve performance, Pourbaix stability related to their electrocatalytic operating conditions, density functional theory and advances in machine learning for their discovery, and prospects in large scale synthesis and solution processing techniques to produce membrane electrode assemblies and integrated electrodes. This Review provides a perspective that is complemented by new density functional theory calculations which show how these recent advances in MXene material design are paving the way for effective electrocatalysts required for the transition to integrated renewable energy systems.

17.
Nanoscale ; 14(42): 15669-15678, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36227160

RESUMEN

The development of hybrid sorbent/catalysts for carbon capture and conversion to chemical fuels involves several material and engineering design considerations. Herein, a metal-organic framework (MOF), known as Mg-CUK-1, is loaded with Ru and Ni nanoparticles and assessed as a hybrid material for the sequential capture and conversion of carbon dioxide (CO2) to methane (CH4). Low nanocatalyst loadings led to enhanced overall performance by preserving more CO2 uptake within the Mg-CUK-1 sorbent. Low temperature CO2 desorption from Mg-CUK-1 facilitated complete CO2 release and subsequent conversion to CH4. The influence of oxygen exposure on catalyst performance was assessed, with Ru-loaded Mg-CUK-1 exhibiting oxygen tolerance through sustained CH4 generation of 1.40 mmol g-1 over ten cycles. In contrast, Ni-loaded Mg-CUK-1 was unable to retain initial catalytic performance, reflected in an 11.4% decrease in CH4 generation over ten cycles. When combined, 0.3Ru2.7Ni Mg-CUK-1 yielded comparable overall performance to 3Ru Mg-CUK-1, indicating that Ru aids the re-reduction of NiO to Ni after O2 exposure. By combining multiple catalyst species within one hybrid sorbent/catalyst material, greater catalyst stability is achieved, resulting in sustained overall performance. The introduced strategy provides an approach for fostering resilient hydrogenation catalysts upon exposure to reactive species often found in real-world point source CO2 emissions.

18.
ACS Appl Mater Interfaces ; 14(36): 40822-40833, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36036714

RESUMEN

Hydrogen production through water electrolysis is a promising method to utilize renewable energy in the context of urgent need to phase out fossil fuels. Nickel-molybdenum (NiMo) electrodes are among the best performing non-noble metal-based electrodes for hydrogen evolution reaction in alkaline media (alkaline HER). Albeit exhibiting stable performance in electrolysis at a constant power supply (i.e., constant electrolysis), NiMo electrodes suffer from performance degradation in electrolysis at an intermittent power supply (i.e., intermittent electrolysis), which is emblematic of electrolysis powered directly by renewable energy (such as wind and solar power sources). Here we reveal that NiMo electrodes were oxidized by dissolved oxygen during power interruption, leading to vanishing of metallic Ni active sites and loss of conductivity in MoOx substrate. Based on the understanding of the degradation mechanism, chromium (Cr) coating was successfully applied as a protective layer to inhibit oxygen reduction reaction (ORR) and significantly enhance the stability of NiMo electrodes in intermittent electrolysis. Further, combining experimental and Molecular Dynamics (MD) simulations, we demonstrate that the Cr coating served as a physical barrier inhibiting diffusion of oxygen, while still allowing other species to pass through. Our work offers insights into electrode behavior in intermittent electrolysis, as well as provides Cr coating as a valid method and corresponding deep understanding of the factors for stability enhancement, paving the way for the successful application of lab-scale electrodes in industrial electrolysis powered directly by renewable energy.

19.
Photochem Photobiol Sci ; 21(12): 2115-2126, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35933640

RESUMEN

Photoreforming has been shown to accelerate the H2 evolution rate compared to water splitting due to thermodynamically favorable organic oxidation. In addition, the potential to simultaneously produce solar fuel and value-added chemicals is a significant benefit of photoreforming. To achieve an efficient and economically viable photoreforming process, the selection and design of an appropriate photocatalyst is essential. Carbon nitride is promising as a metal-free photocatalyst with visible light activity, high stability, and low fabrication cost. However, it typically exhibits poor photogenerated charge carrier dynamics, thereby resulting in low photocatalytic performance. Herein, we demonstrate improved carrier dynamics in urea-functionalized carbon nitride with in situ photodeposited Ni cocatalyst (Ni/Urea-CN) for ethanol photoreforming. In the presence of 1 mM Ni2+ precursor, an H2 evolution rate of 760.5 µmol h-1 g-1 and an acetaldehyde production rate of 888.2 µmol h-1 g-1 were obtained for Ni/Urea-CN. The enhanced activity is ascribed to the significantly improved carrier dynamics in Urea-CN. The ability of oxygen moieties in the urea group to attract electrons and to increase the hole mobility via a positive shift in the valence band promotes an improvement in the overall carrier dynamics. In addition, high crystallinity and specific surface area of the Urea-CN contributed to accelerating charge separation and transfer. As a result, the electrons were efficiently transferred from Urea-CN to the Ni cocatalyst for H2 evolution while the holes were consumed during ethanol oxidation. The work demonstrates a means by which carrier dynamics can be tuned by engineering carbon nitride via edge functionalization.


Asunto(s)
Níquel , Urea , Etanol , Acetaldehído
20.
Angew Chem Int Ed Engl ; 61(37): e202206915, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-35894267

RESUMEN

The electrochemical oxygen reduction reaction (ORR) provides a green route for decentralized H2 O2 synthesis, where a structure-selectivity relationship is pivotal for the control of a highly selective and active two-electron pathway. Here, we report the fabrication of a boron and nitrogen co-doped turbostratic carbon catalyst with tunable B-N-C configurations (CNB-ZIL) by the assistance of a zwitterionic liquid (ZIL) for electrochemical hydrogen peroxide production. Combined spectroscopic analysis reveals a fine tailored B-N moiety in CNB-ZIL, where interfacial B-N species in a homogeneous distribution tend to segregate into hexagonal boron nitride domains at higher pyrolysis temperatures. Based on the experimental observations, a correlation between the interfacial B-N moieties and HO2 - selectivity is established. The CNB-ZIL electrocatalysts with optimal interfacial B-N moieties exhibit a high HO2 - selectivity with small overpotentials in alkaline media, giving a HO2 - yield of ≈1787 mmol gcatalyst -1 h-1 at -1.4 V in a flow-cell reactor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA