Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Zoolog Sci ; 40(6): 423-430, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38064368

RESUMEN

In diurnal and nocturnal organisms, daily activity is regulated by the perception of environmental stimuli and circadian rhythms, which enable organisms to maintain their essential behaviors. The Japanese sand lances genus Ammodytes are coastal marine fish that exhibit unique nocturnal sand burrowing behavior. To elucidate the extrinsic and intrinsic regulation of this behavior and its endocrinological basis, we conducted a series of rearing experiments under various light conditions and hormone administrations. Under a light-dark photoperiod, the fish showed three types of behavior: sand buried, head-exposed from sand, and swimming/feeding. During the transition from dark to light periods, the fish first showed head exposure, followed by swimming and foraging, and buried themselves in the sand immediately after shifting to the dark period. Under constant light conditions, fish exhibited swimming behavior during the period corresponding to the acclimated light period. In addition, swimming did not occur under constant dark conditions but head exposure was observed at the time of the dark-light transition during acclimation. These observations indicate that the essential behavior of sand lances is regulated by both light and circadian rhythms. Subsequently, a melatonin-containing diet promoted the onset of burrowing in 10 to 120 min in a dose-dependent manner at 0.3-128 µg/g-diet, suggesting the direct behavioral regulation by this hormone. These findings suggest that the behavior of sand lances is strictly regulated by an intrinsic mechanism and that melatonin is a regulatory endocrine factor that induces burrowing behavior.


Asunto(s)
Melatonina , Perciformes , Animales , Natación , Melatonina/farmacología , Japón , Ritmo Circadiano/fisiología , Fotoperiodo , Luz
2.
Sensors (Basel) ; 23(7)2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37050532

RESUMEN

This study evaluated the effect of pitch on 256-slice helical computed tomography (CT) scans. Cylindrical water phantoms (CWP) were measured using axial and helical scans with various pitch values. The surface dose distributions of CWP were measured, and reconstructed images were obtained using filtered back-projection (FBP) and iterative model reconstruction (IMR). The image noise in each reconstructed image was decomposed into a baseline component and another component that varied along the z-axis. The baseline component of the image noise was highest at the center of the reconstructed image and decreased toward the edges. The normalized 2D power spectra for each pitch were almost identically distributed. Furthermore, the ratios of the 2D power spectra for IMR and FBP at different pitch values were obtained. The magnitudes of the components varying along the z-axis were smallest at the center of the reconstructed image and increased toward the edge. The ratios of the 3D power spectra on the fx axis for IMR and FBP at different pitch values were obtained. The results showed that the effect of the pitch was related to the component that varied along the z-axis. Furthermore, the pitch had a smaller effect on IMR than on FBP.


Asunto(s)
Interpretación de Imagen Radiográfica Asistida por Computador , Tomografía Computarizada por Rayos X , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Estudios Prospectivos , Tomografía Computarizada por Rayos X/métodos , Fantasmas de Imagen , Dosis de Radiación , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos
3.
Fish Physiol Biochem ; 49(2): 385-398, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37043055

RESUMEN

We examined neuronal responses of hypothalamic melanin-concentrating hormone (MCH) and corticotropin-releasing hormone (CRH) to background color in the self-fertilizing fish, Kryptolebias marmoratus. Fish were individually reared in lidless white or black cylindrical plastic containers for 15 days. The number of MCH-immunoreactive (ir) cell bodies in the nucleus lateralis tuberis (NLT) of the hypothalamus was significantly greater in the white-acclimated fish, while no significant differences were observed in the nucleus anterior tuberis (NAT) of the hypothalamus. Significant differences were not seen in the number of CRH-ir cell bodies in the NLT between the groups. The body of the white- and black-acclimated fish appeared lighter and darker, respectively, compared with the baseline color. In the black-acclimated fish, feeding activity was significantly greater with a tendency toward higher specific growth rate compared with the observations in white-acclimated fish. No significant inter-group cortisol level differences were observed. These results indicate that background color affects MCH neuronal activity in the NLT as well as body color adaptation but does not affect CRH neuronal activity in K. marmoratus.


Asunto(s)
Hormonas Hipotalámicas , Peces Killi , Animales , Hormona Liberadora de Corticotropina , Hormonas Hipotalámicas/metabolismo , Hormonas Hipofisarias , Melaninas , Hipotálamo/metabolismo , Peces Killi/metabolismo
4.
Jpn J Radiol ; 41(4): 428-436, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36449252

RESUMEN

PURPOSE: Amyloid light chain (AL) and transthyretin (ATTR) are the major subtypes of cardiac amyloidosis (CA). 99mTc-pyrophosphate (PYP) scintigraphy is used to differentiate ATTR from other CA subtypes. We adapted the standardized uptake value (SUV) for 99mTc-PYP and proposed two quantitative indices, amyloid deposition volume (AmyDV) and total amyloid uptake (TAU). This study aimed to evaluate the utility of these quantitative indices in differentiating ATTR from non-ATTRs. MATERIALS AND METHODS: Before the SUV measurement, the Becquerel calibration factor (BCF) of 99mTc was obtained by a phantom experiment. Thirty-two patients who had undergone hybrid SPECT/CT imaging 3 h after injection of 99mTc-PYP (370 MBq) were studied. CT attenuation correction for image reconstruction was applied in all. We calculated SUV, AmyDV, and TAU using a quantitative analysis software program for bone SPECT (GI-BONE) and analyzed AmyDV using two methods: threshold method (set 40%); and constant value method (average SUVmax of ribs). We assessed the diagnostic ability of heart-to-contralateral lung (H/CL) ratio, SUV, AmyDV, and TAU to differentiate ATTR from non-ATTR using receiver operating characteristic (ROC) analysis. RESULTS: Statistically significant differences in all quantitative indices were observed between ATTR and non-ATTR. The area under the curve of each quantitative index for discriminating between ATTR and non-ATTR were as follows: H/CL, 0.997; SUVmax, 0.953; SUVmean (M1), 0.964; SUVmean (M2), 0.969; AmyDV (M1), 0.875; AmyDV (M2), 0.974; and TAU, 0.974. The AmyDV (M2) had higher diagnostic ability than AmyDV (M1). Thus, TAU was calculated as AmyDV (M2) × SUVmean (M2). In the ROC curve, SUV, AmyDV, and TAU had almost the same diagnostic ability as H/CL in distinguishing ATTR from non-ATTRs. CONCLUSIONS: We propose two novel 3D-based quantitative parameters (AmyDV and TAU) that have almost equal ability to discriminate ATTR from non-ATTR.


Asunto(s)
Amiloidosis , Cardiomiopatías , Humanos , Difosfatos , Pirofosfato de Tecnecio Tc 99m , Cardiomiopatías/diagnóstico por imagen , Amiloidosis/diagnóstico por imagen , Cintigrafía , Amiloide
5.
Toxicon ; 218: 1-7, 2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36041513

RESUMEN

We have previously detected tetrodotoxin (TTX) in the brain of the wild toxic torafugu Takifugu rubripes by immunohistochemistry and LC/MS analysis. We have also indicated that TTX is a stress-relieving substance in the brain and reduces agonistic interactions in torafugu juveniles. Although the toxicity of marine pufferfish in the Japanese waters has been extensively examined for food hygiene, whether wild toxic pufferfish generally possess TTX in the brain has not been investigated. In the present study, we examined the presence of TTX in the brain of several wild toxic marine pufferfishes such as kusafugu T. alboplumbeus, komonfugu T. flavipterus, shosaifugu T. snyderi, okinawafugu Chelonodontops patoca, and in wild non-toxic pufferfishes such as shirosabafugu Lagocephalus spadiceus and yoritofugu Sphoeroides pachygaster. We also examined tsumugihaze Yongeichthys criniger, known to possess TTX in the skin, viscera, and gonad. TTX was extracted from the brain, liver, skin, and muscle and was analyzed by LC/MS. TTX was detected in the brain as well as in the liver, skin, and muscle in kusafugu, komonfugu, shosaifugu, okinawafugu, and tsumugihaze. In shirosabafugu, low level of TTX (0.8 mouse unit/g-brain) was detected in the brain in 1 out of 3 individuals. In yoritofugu, no TTX was detected in any of the tissues. We conclude that the brain is also an organ that contains TTX in the wild toxic marine pufferfishes.


Asunto(s)
Perciformes , Tetraodontiformes , Animales , Encéfalo , Cromatografía Liquida , Takifugu , Tetrodotoxina/análisis , Tetrodotoxina/toxicidad
6.
Artículo en Inglés | MEDLINE | ID: mdl-35489608

RESUMEN

Gonadotropin-releasing hormone (GnRH) plays an important role in reproduction in both vertebrates and invertebrates; however, little is known about GnRH during gonadal development in bivalves. We developed a time-resolved fluoroimmunoassay (TR-FIA) for Manila clam Ruditapes philippinarum GnRH (rpGnRH) and measured the amount of rpGnRH in the cerebral ganglion (CG) and sex steroid hormones in the hemolymph during gonadal development. The cross-reactivity of the anti-rpGnRH antibody against other forms of GnRH was <0.15%, and the displacement curve obtained for serially diluted CG extracts was parallel to the rpGnRH standard curve, confirming the suitability of the TR-FIA system. Based on histological observation, gonadal development of the clams was classified into early developing (stage 1), late developing (stage 2), ripe (stage 3), and partially spent (stage 4). In female clams, rpGnRH levels in the CG peaked at stage 1, and 17ß-estradiol (E2) levels in the hemolymph peaked at stage 2. The rpGnRH levels in males and hemolymph testosterone levels in both sexes did not differ significantly across stages. Hemolymph E2 levels in males were below the detection limit for the TR-FIA. These results suggest that rpGnRH and E2 secretion in females can activate ovarian development of the Manila clam at the early and late developing stages, respectively.


Asunto(s)
Bivalvos , Hormona Liberadora de Gonadotropina , Animales , Bivalvos/fisiología , Estradiol , Femenino , Gónadas/fisiología , Masculino , Reproducción
7.
Artículo en Inglés | MEDLINE | ID: mdl-34737084

RESUMEN

We tested whether crowding stress affects the hypothalamo-pituitary-interrenal (HPI) axis of the self-fertilizing fish, Kryptolebias marmoratus, which is known to be aggressive in the laboratory conditions but sometimes found as a group from a single land crab burrow in the wild. The projection of corticotropin-releasing hormone (CRH) neurons to the adrenocorticotropic hormone (ACTH) cells in the pituitary was confirmed by dual-label immunohistochemistry; CRH-immunoreactive (ir) fibers originating from cell bodies located in the lateral tuberal nucleus (NLT) of the hypothalamus were observed to project to ACTH-ir cells in the rostral pars distalis of the pituitary. Then, fish were reared solitary or in pairs for 14 days, and the number of CRH-ir cell bodies in the NLT of the hypothalamus and cortisol levels in the body without head region were compared. The number of CRH-ir cell bodies and cortisol levels were significantly higher in paired fish. These results indicate that crowding stress affects the HPI axis in K. marmoratus which thrive in small burrows with limited water volume.


Asunto(s)
Ciprinodontiformes/fisiología , Sistema Hipotálamo-Hipofisario/fisiología , Peces Killi/fisiología , Autofecundación/fisiología , Hormona Adrenocorticotrópica/fisiología , Animales , Hormona Liberadora de Corticotropina/fisiología , Ciprinodontiformes/anatomía & histología , Femenino , Proteínas de Peces/fisiología , Organismos Hermafroditas/fisiología , Sistema Hipotálamo-Hipofisario/anatomía & histología , Inmunohistoquímica , Riñón/fisiología , Peces Killi/anatomía & histología , Masculino , Fibras Nerviosas/fisiología , Estrés Fisiológico
8.
Front Endocrinol (Lausanne) ; 13: 994060, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36619537

RESUMEN

Introduction: Koi carp, an ornamental fish derived from the common carp Cyprinus carpio (CC), is characterized by beautiful skin color patterns. However, the mechanism that gives rise to the characteristic vivid skin coloration of koi carp has not been clarified. The skin coloration of many teleosts changes in response to differences in the background color. This change in skin coloration is caused by diffusion or aggregation of pigment granules in chromatophores and is regulated mainly by sympathetic nerves and hormones. We hypothesized that there would be some abnormality in the mechanism of skin color regulation in koi carp, which impairs skin color fading in response to background color. Methods: We compared the function of melanin-concentrating hormone (MCH), noradrenaline, and adrenaline in CC and Taisho-Sanshoku (TS), a variety of tri-colored koi. Results and Discussion: In CC acclimated to a white background, the skin color became paler and pigment granules aggregated in melanophores in the scales compared to that in black-acclimated CC. There were no clear differences in skin color or pigment granule aggregation in white- or black-acclimated TS. The expression of mch1 mRNA in the brain was higher in the white-acclimated CC than that in the black-acclimated CC. However, the expression of mch1 mRNA in the brain in the TS did not change in response to the background color. Additionally, plasma MCH levels did not differ between white- and black-acclimated fish in either CC or TS. In vitro experiments showed that noradrenaline induced pigment aggregation in scale melanophores in both CC and TS, whereas adrenaline induced pigment aggregation in the CC but not in the TS. In vitro administration of MCH induced pigment granule aggregation in the CC but not in the TS. However, intraperitoneal injection of MCH resulted in pigment granule aggregation in both CC and TS. Collectively, these results suggest that the weak sensitivity of scale melanophores to MCH and adrenaline might be responsible for the lack of skin color change in response to background color in the TS.


Asunto(s)
Carpas , Epinefrina , Animales , Epinefrina/farmacología , Melanóforos/metabolismo , Norepinefrina/farmacología , Norepinefrina/metabolismo , ARN Mensajero/metabolismo
9.
Ann Nucl Med ; 35(9): 1004-1014, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34046870

RESUMEN

OBJECTIVE: The recommended start time for 18F-flutemetamol amyloid positron emission tomography (PET) examination is 60-120 min after 18F-flutemetamol injection, while an acquisition time of 10-30 min is generally recommended. We aimed to elucidate the effects of different examination conditions on image quality, diagnostic ability, and quantitative value of amyloid PET using 18F-flutemetamol. METHODS: We acquired data on a Discovery PET/computed tomography 710 scanner using Hoffman brain and pillar phantoms with 20 MBq of 18F for 30 min. The images were reconstructed into 10-, 20-, and 30-min periods. The ordered subset-expectation maximization algorithm was used for image reconstruction, which uses a 2- or 4-mm Gaussian filter and a combination of iteration and subset numbers. The percentage contrast and coefficient of variation (CV; as the image noise) were used as physical evaluation indices for reconstructed images, and images with superior contrast and low image noise were selected for clinical evaluation. The imaging data of 15 symptomatic patients (n = 7 and n = 8 for positive and negative diagnoses of Alzheimer's disease, respectively) were reconstructed under the phantom study conditions. Radiographers visually evaluated and ranked the clinical images based on the overall contrast and image noise, and nuclear medicine specialists diagnosed Alzheimer's disease. We compared the standardized uptake value ratio (SUVR) obtained with different acquisition conditions. RESULTS: The basic study using the phantom revealed high convergence of contrast and image noise in five patterns of acquisition time and filter strengths. Regarding visual evaluation, the use of a 2-mm Gaussian filter caused difficulties in diagnosis because the brain parenchymal accumulation was mottled with high image noise. Differences in image quality and diagnostic ability due to different examination times were not significant. Differences in the SUVR were not significant in patients with a negative Alzheimer's disease diagnosis; in patients with a positive diagnosis, the SUVR showed significant fluctuation depending on the acquisition conditions. CONCLUSION: The differences in image quality and diagnostic performance due to the differences in 10-min acquisition time were not significant; however, of note, SUVR showed significant fluctuation depending on the acquisition conditions in patients diagnosed with Alzheimer's disease.


Asunto(s)
Compuestos de Anilina , Benzotiazoles , Tomografía de Emisión de Positrones , Amiloide , Humanos
10.
Zoolog Sci ; 38(1): 51-59, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33639718

RESUMEN

In vertebrates, gonadotropin-releasing hormone (GnRH) regulates gonadal maturation by stimulating the synthesis and release of pituitary gonadotropins. GnRH has also been identified in invertebrates. Crustacea consists of several classes including Cephalocarida, Remipedia, Branchiopoda (e.g., tadpole shrimp), Hexanauplia (e.g., barnacle) and Malacostraca (e.g., shrimp, crab). In the malacostracan crustaceans, the presence of GnRH has been detected in several species, mainly by immunohistochemistry. In the present study, we examined whether a GnRH-like peptide exists in the brain and/or nerve ganglion of three classes of crustaceans, the tadpole shrimp Triops longicaudatus (Branchiopoda), the barnacle Balanus crenatus (Hexanauplia), and the hermit crab Pagurus filholi (Malacostraca), by immunohistochemistry using a rabbit polyclonal antibody raised against chicken GnRH-II (GnRH2). This antibody was found to recognize the giant freshwater prawn Macrobrachium rosenbergii GnRH (MroGnRH). In the tadpole shrimp, GnRH-like-immunoreactive (ir) cell bodies were located in the circumesophageal connective of the deuterocerebrum, and GnRH-like-ir fibers were detected also in the ventral nerve cord. In the barnacle, GnRH-like-ir cell bodies and fibers were located in the supraesophageal ganglion (brain), the subesophageal ganglion, and the circumesophageal connective. In the hermit crab, GnRH-like-ir cell bodies were detected in the anterior-most part of the supraesophageal ganglion and the subesophageal ganglion. GnRH-like-ir fibers were observed also in the thoracic ganglion and the eyestalk. These results suggest that a GnRH-like peptide exists widely in crustacean species.


Asunto(s)
Crustáceos/anatomía & histología , Crustáceos/metabolismo , Ganglios/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Animales , Inmunohistoquímica , Péptidos/análisis
11.
Toxicon ; 171: 54-61, 2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31580836

RESUMEN

We tested whether tetrodotoxin (TTX) functions as a stress relieving substance in puffer fish. We orally administered TTX to the juveniles of hatchery-reared non-toxic tiger puffer Takifugu rubripes and measured the effects of TTX on brain corticotropin-releasing hormone (CRH) mRNA expression and plasma cortisol levels in comparison with effects in non-toxic juveniles. Firstly, the reciprocal connections of CRH and adrenocorticotropic hormone (ACTH) were confirmed by dual-label immunohistochemistry. CRH-immunoreactive (ir) cell bodies were detected in the hypothalamus and CRH-ir fibers were observed to project to ACTH-ir cells in the rostral pars distalis of the pituitary. Next, a TTX-containing diet (2.35 mouse units (517 ng)/g diet) or a non-toxic diet were fed to the fish for 28 days under a recirculating system. Standard length and body weight became significantly larger in the TTX-treated group. The degree of loss of the caudal fin, which is an indicator of the degree of agonistic interactions, where high values show a higher loss of caudal fin of a fish due to nipping by other individuals, was significantly lower in the TTX-treated group. Relative CRH mRNA expression levels in the brain and cortisol levels in the plasma were significantly lower in the TTX-treated group. These results indicate that TTX functions as a stress relieving substance by affecting the CRH-ACTH-cortisol axis and reducing agonistic interactions in tiger puffer juveniles.


Asunto(s)
Hormona Liberadora de Corticotropina/análisis , Takifugu/fisiología , Tetrodotoxina/farmacología , Hormona Adrenocorticotrópica/análisis , Aletas de Animales , Animales , Conducta Animal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Química Encefálica/efectos de los fármacos , Expresión Génica , Hidrocortisona/sangre , Hipófisis/efectos de los fármacos , ARN Mensajero/genética , Takifugu/metabolismo
12.
Fish Physiol Biochem ; 45(2): 753-771, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30617941

RESUMEN

The localization of gonadotropin-releasing hormone (GnRH) in the brain and pituitary of the self-fertilizing mangrove killifish Kryptolebias marmoratus was examined by immunohistochemistry and in situ hybridization to understand its neuroendocrine system. The genome assembly of K. marmoratus did not have any sequence encoding GnRH1, but sequences encoding GnRH2 (chicken GnRH-II) and GnRH3 (salmon GnRH) were found. Therefore, GnRH1 was identified by in silico cloning. The deduced amino acid sequence of the K. marmoratus GnRH1 (mature peptide) was identical to that of the medaka GnRH. GnRH1 neurons were detected in the ventral part of the preoptic nucleus by immunohistochemistry and in situ hybridization, and GnRH1-immunoreactive (ir) fibers were observed throughout the brain. GnRH1-ir fibers were in close contact with luteinizing hormone (LH)-ir cells in the pituitary using double immunohistochemistry. GnRH2 neurons were detected in the midbrain tegmentum by immunohistochemistry and in situ hybridization. Although GnRH2-ir fibers were observed throughout the brain, they were not detected in the pituitary. GnRH3 neurons were detected in the lateral part of the ventral telencephalic area by both methods. GnRH3-ir fibers were observed throughout the brain, and a few GnRH3-ir fibers were in close contact with LH-ir cells in the pituitary. These results indicate that GnRH1 and possibly GnRH3 are responsible for gonadal maturation through LH secretion and that all three forms of GnRH function as neurotransmitters or neuromodulators in the brain of K. marmoratus.


Asunto(s)
Encéfalo/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Peces Killi/metabolismo , Hipófisis/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Hormona Liberadora de Gonadotropina/química , Organismos Hermafroditas/fisiología , Humanos , Inmunohistoquímica , Filogenia , Reproducción/fisiología
13.
Acta Histochem ; 121(2): 234-239, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30616841

RESUMEN

The gonadotropin-releasing hormone (GnRH) gene sequence has been identified in an annelid polychaete marine worm using continual genome sequencing. The distribution of GnRH immunoreactive (ir) cell bodies and fibers in the nerve ganglion of the clam worm Perinereis aibuhitensis (Polychaeta) was examined by immunohistochemistry using a newly produced rabbit polyclonal antibody raised against the marine worm GnRH (mwGnRH). The specificity of the antibody was confirmed by dot blot assay. The antibody cross-reacted with mwGnRH, but not with other forms of GnRH such as octopus GnRH, tunicate GnRH-I, II, owl limpet GnRH, and lamprey GnRH-II. In P. aibuhitensis, mwGnRH-ir cell bodies were detected in the nuclei 15-22, the caudal part of the cerebral ganglion. Furthermore, mwGnRH-ir fibers were mainly observed in the optic neuropil, but mwGnRH-ir fibers were also detected in the central neuropil region, the subpharyngeal ganglion, and the ventral nerve cord. These results indicate that mwGnRH is synthesized in the cerebral ganglion, is transported through the subpharyngeal ganglion and the ventral nerve cord, and functions either as a neurotransmitter or neuromodulator.


Asunto(s)
Cuerpo Celular/fisiología , Ganglios/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Inmunohistoquímica , Animales , Encéfalo/metabolismo , Inmunohistoquímica/métodos , Fibras Nerviosas/metabolismo , Poliquetos , Conejos
14.
Fish Physiol Biochem ; 45(1): 1-18, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30094681

RESUMEN

The short mackerel (Rastrelliger brachysoma) is one of the most economically important fish in Thailand; it is also a prime candidate for mariculture but unfortunately is plagued by reproductive problems that cause low production of gametes in captivity. An understanding of how the brain, pituitary, and gonad axis (BPG) from the neuroendocrine system are involved in the reproductive activity of wild and captive R. brachysoma should help clarify the situation. In this study, we investigated changes in the sea bream gonadotropin-releasing hormone (sbGnRH)-gonadotropin (GTH) system in the female short mackerel, Rastrelliger brachysoma (Bleeker, 1851), during breeding season. sbGnRH-immunoreactive (ir) cell bodies were detected in the nucleus preopticus-periventricularis including nucleus periventricularis (NPT), nucleus preopticus (Np), and nucleus lateralis tuberis (NLT). Additionally, the sbGnRH-ir fibers protruded into the proximal par distalis (PPD) where GTH (FSH and LH) cells were detected. The number of sbGnRH-ir cell bodies and GTH cells and level of LH mRNA were significantly higher in the breeding season than those in the non-breeding season. Moreover, the number of sbGnRH-ir cell bodies and GTH cells and levels of sbGnRH and GTH (FSH and LH) mRNA were significantly higher in the wild fish than those in the cultured broodstock. It is suggested that the wild fish tended to have better reproductive system than hatchery fishes. This could be related to the endocrinological dysfunction and the reproductive failure in the hatchery condition. Moreover, the changes of all of the hormonal level could potentially be applied to R. brachysoma aquaculture.


Asunto(s)
Peces/fisiología , Hormona Liberadora de Gonadotropina/metabolismo , Gonadotropinas/metabolismo , Reproducción/fisiología , Estaciones del Año , Animales , Acuicultura , Encéfalo/fisiología , Femenino , Ovario/fisiología , Óvulo , Hipófisis/fisiología
16.
Gen Comp Endocrinol ; 274: 1-7, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30571962

RESUMEN

Prolactin-releasing peptide2 (PrRP2) belongs to the RFamide peptide group and is a paralog of prolactin-releasing peptide (PrRP). Recent studies demonstrated that PrRP2, but not PrRP, regulates prolactin release in teleosts. The evolutionary origin of PrRP and PrRP2 dates back to at least early vertebrates because homologs of PrRP/PrRP2 were identified in lampreys, one of the earliest branch of vertebrates class Agnatha. However, PrRP/PrRP2 remains to be identified in hagfish, another representative species of class Agnatha. Here, we examined the distribution of PrRP2 in the brain and pituitary of the inshore hagfish Eptatretus burgeri to obtain further understanding of the neuroendocrine system of PrRP2. PrRP2-immunoreactive (ir) cell bodies were detected in the infundibular nucleus of hypothalamus (HYinf). PrRP2-ir fibers were restricted around PrRP2-ir cell bodies and were not detected in the dorsal wall of the neurohypophysis compared to the abundant PrRP2-ir fiber distribution in the brain and innervation to the pituitary in other vertebrates. To examine possible reciprocal connections of PrRP2 and other neuropeptides, we further conducted dual-label immunohistochemistry of PrRP2 and the PQRFamide (PQRFa) peptide or corticotropin-releasing hormone (CRH). Reciprocal connections are suggested between PrRP2 and PQRFa neurons as well as between PrRP2 and CRH neurons. The present study demonstrates, for the first time, that PrRP2 is expressed in the brain of inshore hagfish. The restricted distribution of PrRP2-ir fibers in the HYinf suggests that PrRP2 does not directly regulate the pituitary gland, but regulates the function of the HYinf where PQRFa and CRH are expressed.


Asunto(s)
Encéfalo/metabolismo , Anguila Babosa/metabolismo , Inmunohistoquímica/métodos , Hormona Liberadora de Prolactina/metabolismo , Animales , Especificidad de Anticuerpos , Hormona Liberadora de Corticotropina/metabolismo , Femenino , Hipotálamo/metabolismo , Masculino , Hipófisis/metabolismo
17.
Biosci Biotechnol Biochem ; 82(2): 268-273, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29334330

RESUMEN

The presence of d-aspartate (d-Asp), a biologically rare amino acid, was evaluated in 38 species of marine macroalgae (seaweeds). Despite the ubiquitous presence of free l-Asp, free d-Asp was detected in only 5 species belonging to the Sargassaceae family of class Phaeophyceae (brown algae) but not in any species of the phyla Chlorophyta (green algae) and Rhodophyta (red algae). All other members of Phaeophyceae, including 3 species classified into the section Teretia of Sargassaceae did not contain d-Asp. These results indicate that the presence of free d-Asp in marine macroalgae is restricted only to the Sargassaceae family, excluding the species in the section Teretia.


Asunto(s)
Ácido D-Aspártico/metabolismo , Phaeophyceae/metabolismo , Algas Marinas/metabolismo , Ácido D-Aspártico/química , Estereoisomerismo
18.
Biosci Biotechnol Biochem ; 81(9): 1681-1686, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28633617

RESUMEN

This work describes a method for the simultaneous determination of primary d- and l-amino acids and secondary amino acids such as d- and l-proline. In order to remove interferences in the simultaneous determination of primary and secondary amines, the primary amines were derivatized with o-phthalaldehyde/N-acetyl-l-cysteine (OPA/NAC) and subsequently with 1-(9-fluorenyl)ethyl chloroformate (FLEC) for secondary amines, in a pre-column separation derivatization technique. These fluorescent diastereomers of the amino acids were obtained within 3 min at room temperature and determined simultaneously by changing wavelengths during analysis in a single eluting run in the high-performance liquid chromatography column. This method, referred to as the "two-step labelling method," is effective for the simultaneous determination of d- and l-amino acids.


Asunto(s)
Aminoácidos/química , Cromatografía Líquida de Alta Presión/métodos , Prolina/química , Coloración y Etiquetado , Estereoisomerismo , Compuestos de Sulfhidrilo/química , Factores de Tiempo
19.
Gen Comp Endocrinol ; 236: 174-180, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27444128

RESUMEN

The distribution of corticotropin-releasing hormone (CRH) in the brain and pituitary of the hagfish Eptatretus burgeri, representing the earliest branch of vertebrates, was examined by immunohistochemistry to better understand the neuroendocrine system of hagfish. CRH-immunoreactive (ir) cell bodies were detected in the preoptic nucleus, periventricular preoptic nucleus, infundibular nucleus of the hypothalamus, and in the nucleus "A" of Kusunoki et al. (1982) in the medulla oblongata. In the brain, CRH-ir fibers were detected in almost all areas except for the olfactory bulb and telencephalon. Bundles of CRH-ir fibers were detected in the dorsal wall of the neurohypophysis. However, CRH-ir fibers were distant from adrenocorticotropic hormone (ACTH) cells in the adenohypophysis, as studied by dual-label immunohistochemistry. Cortisol and corticosterone were detected in the plasma by a combination of reverse-phase high performance liquid chromatography and a time-resolved fluoroimmunoassay. These results suggest that in the hagfish, CRH, ACTH, and corticosteroids exist and that CRH released in the neurohypophysis likely reaches the adenohypophysis via diffusion.


Asunto(s)
Encéfalo/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Anguila Babosa/metabolismo , Hipófisis/metabolismo , Animales , Inmunohistoquímica
20.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 70(1): 19-25, 2014 Jan.
Artículo en Japonés | MEDLINE | ID: mdl-24464060

RESUMEN

A picture archiving and communication system (PACS) for multi-vendor imaging servers is useful, since it can provide a variety of image-processing services. However, to delete an image file in the PACS, it is necessary to delete not only the image but all its associated images that are stored in multiple servers: this is a lengthy and painstaking process. To reduce this workload, we have developed a system consisting of a computer program with a graphical user interface that can delete the target image and all related images by means of batch processing. The developed system creates an extensible markup language (XML)-format file that describes the operation for deleting an image and forwards the XML file to the main server. Using a Windows file-sharing system (SMB/CIFS), each server shares the XML file and deletes the images in its own database in response to the instructions described in the XML file. We can also rigorously manage information concerning the deleted images using the information that is output from the main server to external storage. We also discuss the degree of load reduction in our system compared with that of ordinary systems.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Almacenamiento y Recuperación de la Información/métodos , Sistemas de Información Radiológica , Bases de Datos Factuales , Humanos , Procesamiento de Imagen Asistido por Computador/tendencias , Almacenamiento y Recuperación de la Información/tendencias , Internet , Sistemas de Información Radiológica/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA