Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 17(23): 24115-24129, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38010110

RESUMEN

Shifting toward sustainability and low carbon emission necessitates recycling. Aluminum alloys can be recycled from postconsumer scrap with approximately 5% of the energy needed to produce the same amount of primary alloys. However, the presence of certain alloying elements, such as copper and zinc, as impurities in recycled Al-Mg-Si alloys is difficult to avoid. This work has investigated the influence of tiny concentrations of Cu (0.05 wt %) and Zn (0.06 wt %), individually and in combination, on the precipitate crystal structures in Al-Mg-Si alloys in peak aged and overaged conditions. To assess whether such concentrations can affect the hardening precipitate structures, atomic resolution high-angle annular dark-field scanning transmission electron microscopy and atom probe tomography were adopted. The results indicate that low levels of Cu or Zn have a significant influence. Both elements showed a relatively high tendency to incorporate into precipitate structures, where Cu occupies specific atomic sites, creating its own local atomic configurations. However, Zn exhibited distinct behavior through the formation of extended local areas with 2-fold symmetry and mirror planes, not previously observed in precipitates in Al-Mg-Si alloys. Incorporation of Cu and/or Zn will influence the precipitates' electrochemical potential relative to matrix- and precipitate-free zones and thus the corrosion resistance. Furthermore, the presence of Cu/Zn structures (e.g., ß'Cu, Q'/C) enhances the thermal stability of these precipitates and, accordingly, the mechanical properties of the material. The results obtained from this work are highly relevant to the topic of recycling of aluminum alloys, where accumulation of certain alloying elements is almost unavoidable; thus, tight compositional control might be critical to avoid quality degradation.

2.
Dalton Trans ; 48(33): 12684-12698, 2019 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-31384875

RESUMEN

Producing pure H2 and O2 to sustain the renewable energy sources with minimal environmental damage is a key objective of photo/electrochemical water-splitting research. Metallic Ni-based electrocatalysts are expensive and eco-hazardous. This has rendered the replacement or reduction of Ni content in Ni-based electrocatalysts a decisive criterion in the development of bifunctional electrocatalytic materials. In the current study, spinel/ilmenite composite nickel titanate (NTO) nanofibers were synthesised using sol-gel assisted electrospinning followed by pyrolysis at different soaking temperatures (viz., 773, 973, and 1173 K). The presence of a defective spinel NTO phase (SNTO) distributed uniformly along the nanofibers was confirmed by X-ray photoelectron and Raman spectroscopy. The electron micrographs revealed the morphological change of NTO nanofibers from a mosaic to bamboo structure with an increase in pyrolysis soaking temperature. The electrocatalytic activity of NTO nanofibers obtained at different pyrolysis soaking temperatures for alkaline water-splitting was studied. The highly defective SNTO manifests properties similar to metallic Ni and favours H2 evolution through the hydrogen evolution reaction (HER) by adsorbing more H+ ions on active sites. In contrast, the ilmenite NTO favours O2 discharge. These results are explained based on the morphology of the NTO nanofibers. The mosaic structure which has higher porosity and greater SNTO content shows excellent HER performance. In contrast, the large bamboo structured NTO nanofibers which have lesser porosity and SNTO content cage the bigger (OH)ads ions at their catalytic sites to facilitate OER performance.

3.
ACS Appl Mater Interfaces ; 6(24): 22224-34, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25436873

RESUMEN

The photocatalytic behavior of magnetron sputtered anatase TiO2 coatings on copper, nickel, and gold was investigated with the aim of understanding the effect of the metallic substrate and coating-substrate interface structure. Stoichiometry and nanoscale structure of the coating were investigated using X-ray diffraction, Raman spectroscopy, atomic force microscope, and scanning and transmission electron microscopy. Photocatalytic behavior of the coating was explored by using optical spectrophotometry and electrochemical methods via photovoltage, photocurrent, and scanning kelvin probe microscopy measurements. The nature of the metal substrate and coating-substrate interface had profound influence on the photocatalytic behavior. Less photon energy was required for TiO2 excitation on a nickel substrate, whereas TiO2 coating on copper showed a higher band gap attributed to quantum confinement. However, the TiO2 coating on gold exhibited behavior typical of facile transfer of electrons to and from the CB, therefore requiring only a small amount of photon energy to make the TiO2 coating conductive.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA