Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Hortic Res ; 11(4): uhae038, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38595910

RESUMEN

Cissus quadrangularis is a tetraploid species belonging to the Vitaceae family and is known for the Crassulacean acid metabolism (CAM) pathway in the succulent stem, while the leaves perform C3 photosynthesis. Here, we report a high-quality genome of C. quadrangularis comprising a total size of 679.2 Mb which was phased into two subgenomes. Genome annotation identified 51 857 protein-coding genes, while approximately 47.75% of the genome was composed of repetitive sequences. Gene expression ratios of two subgenomes demonstrated that the sub-A genome as the dominant subgenome played a vital role during the drought tolerance. Genome divergence analysis suggests that the tetraploidization event occurred around 8.9 million years ago. Transcriptome data revealed that pathways related to cutin, suberine, and wax metabolism were enriched in the stem during drought treatment, suggesting that these genes contributed to the drought adaption. Additionally, a subset of CAM-related genes displayed diurnal expression patterns in the succulent stems but not in leaves, indicating that stem-biased expression of existing genes contributed to the CAM evolution. Our findings provide insights into the mechanisms of drought adaptation and photosynthesis transition in plants.

2.
Front Plant Sci ; 14: 1179510, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396648

RESUMEN

Sambucus L. is found in the family Viburnaceae (syn. Adoxaceae) and encompasses approximately 29 accepted species. The complex morphology of these species has caused continued confusion concerning their nomenclature, classification, and identification. Despite previous attempts to resolve taxonomic complexities in the Sambucus genus, there are still unclear phylogenetic relationships among several species. In this study, the newly obtained plastome of Sambucus williamsii Hance. as well as the populations of Sambucus canadensis L., Sambucus javanica Blume, and Sambucus adnata Wall. ex DC were sequenced, and their sizes, structural similarity, gene order, gene number, and guanine-cytosine (GC) contents were analyzed. The phylogenetic analyses were conducted using the whole chloroplast genomes and protein-coding genes (PCGs). The findings revealed that the chloroplast genomes of Sambucus species exhibited typical quadripartite double-stranded DNA molecules. Their lengths ranged from 158,012 base pairs (bp) (S. javanica) to 158,716 bp (S. canadensis L). Each genome comprised a pair of inverted repeats (IRs), which separated the large single-copy (LSC) and small single-copy (SSC) regions. In addition, the plastomes contained 132 genes, encompassing 87 protein-coding, 37 tRNA, and four rRNA genes. In the simple sequence repeat (SSR) analysis, A/T mononucleotides had the highest proportion, with the most repetitive sequences observed in S. williamsii. The comparative genome analyses showed high similarities in structure, order, and gene contents. The hypervariable regions in the studied chloroplast genomes were trnT-GGU, trnF-GAA, psaJ, trnL-UAG, ndhF, and ndhE, which may be used as candidate barcodes for species discrimination in Sambucus genus. Phylogenetic analyses supported the monophyly of Sambucus and revealed the separation of S. javanica and S. adnata populations. Sambucus chinensis Lindl. was nested within S. javanica in the same clade, collaborating their conspecific treatment. These outcomes indicate that the chloroplast genome of Sambucus plants is a valuable genetic resource for resolving taxonomic discrepancies at the lower taxonomic levels and can be applied in molecular evolutionary studies.

3.
Front Genet ; 14: 1131644, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36992699

RESUMEN

Moringa is a mono-genus belonging to the Moringaceae family, which includes 13 species. Among them, Moringa peregrina is plant species native to the Arabian Peninsula, Southern Sinai in Egypt, and the Horn of Africa, and comprehensive studies on its nutritional, industrial, and medicinal values have been performed. Herein, we sequenced and analyzed the initial complete chloroplast genome of Moringa peregrina. Concurrently, we analyzed the new chloroplast genome along with 25 chloroplast genomes related to species representing eight families in the Brassicales order. The results indicate that the plastome sequence of M. peregrina consists of 131 genes, with an average GC content of 39.23%. There is a disparity in the IR regions of the 26 species ranging from 25,804 to 31,477 bp. Plastome structural variations generated 20 hotspot regions that could be considered prospective DNA barcode locations in the Brassicales order. Tandem repeats and SSR structures are reported as significant evidence of structural variations among the 26 tested specimens. Furthermore, selective pressure analysis was performed to estimate the substitution rate within the Moringaceae family, which revealing that the ndhA and accD genes are under positive selective pressure. The phylogenetic analysis of the Brassicales order produced an accurate monophyletic annotation cluster of the Moringaceae and Capparaceae species, offering unambiguous identification without overlapping groups between M. oleifera and M. peregrina, which are genetically strongly associated. Divergence time estimation suggests that the two Moringa species recently diversified, 0.467 Ma. Our findings highlight the first complete plastome of the Egyptian wild-type of M. peregrina, which can be used for determining plastome phylogenetic relationships and systematic evolution history within studies on the Moringaceae family.

4.
BMC Plant Biol ; 22(1): 88, 2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35219317

RESUMEN

BACKGROUND: The large and diverse Coffeeae alliance clade of subfamily Ixoroideae (Rubiaceae) consists of 10 tribes, > 90 genera, and > 2000 species. Previous molecular phylogenetics using limited numbers of markers were often unable to fully resolve the phylogenetic relationships at tribal and generic levels. Also, the structural variations of plastomes (PSVs) within the Coffeeae alliance tribes have been poorly investigated in previous studies. To fully understand the phylogenetic relationships and PSVs within the clade, highly reliable and sufficient sampling with superior next-generation analysis techniques is required. In this study, 71 plastomes (40 newly sequenced and assembled and the rest from the GenBank) were comparatively analyzed to decipher the PSVs and resolve the phylogenetic relationships of the Coffeeae alliance using four molecular data matrices. RESULTS: All plastomes are typically quadripartite with the size ranging from 153,055 to 155,908 bp and contained 111 unique genes. The inverted repeat (IR) regions experienced multiple contraction and expansion; five repeat types were detected but the most abundant was SSR. The size of the Coffeeae alliance clade plastomes and its elements are affected by the IR boundary shifts and the repeat types. However, the emerging PSVs had no taxonomic and phylogenetic implications. Eight highly divergent regions were identified within the plastome regions ndhF, ccsA, ndhD, ndhA, ndhH, ycf1, rps16-trnQ-UUG, and psbM-trnD. These highly variable regions may be potential molecular markers for further species delimitation and population genetic analyses for the clade. Our plastome phylogenomic analyses yielded a well-resolved phylogeny tree with well-support at the tribal and generic levels within the Coffeeae alliance. CONCLUSIONS: Plastome data could be indispensable in resolving the phylogenetic relationships of the Coffeeae alliance tribes. Therefore, this study provides deep insights into the PSVs and phylogenetic relationships of the Coffeeae alliance and the Rubiaceae family as a whole.


Asunto(s)
Genoma de Plastidios , Filogenia , Rubiaceae/genética , Uso de Codones , Evolución Molecular , Genoma del Cloroplasto , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA