Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1255921, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38029198

RESUMEN

Introduction: Heavy metals such as iron, copper, manganese, cobalt, silver, zinc, nickel, and arsenic have accumulated in soils for a long time due to the dumping of industrial waste and sewage. Various techniques have been adapted to overcome metal toxicity in agricultural land but utilizing a biological application using potential microorganisms in heavy metals contaminated soil may be a successful approach to decontaminate heavy metals soil. Therefore, the current study aimed to isolate endophytic bacteria from a medicinal plant (Viburnum grandiflorum) and to investigate the growth-promoting and heavy metal detoxification potential of the isolated endophytic bacteria Agrococus tereus (GenBank accession number MW 979614) under nickel and zinc contamination. Methods: Zinc sulfate and nickel sulfate solutions were prepared at the rate of 100 mg/kg and 50 mg/kg in sterilized distilled water. The experiment was conducted using a completely random design (CRD) with three replicates for each treatment. Results and Discussion: Inoculation of seeds with A. tereus significantly increased the plant growth, nutrient uptake, and defense system. Treatment T4 (inoculated seeds), T5 (inoculated seeds + Zn100 mg/kg), and T6 (inoculated seeds + Ni 100 mg/kg) were effective, but T5 (inoculated seeds + Zn100 mg/kg) was the most pronounced and increased shoot length, root length, leaf width, plant height, fresh weight, moisture content, and proline by 49%, 38%, 89%, 31%, 113%, and 146%, respectively. Moreover the antioxidant enzymes peroxidase and super oxidase dismutase were accelerated by 211 and 68% in contaminated soil when plants were inoculated by A. tereus respectively. Similarly the inoculation of A. tereus also enhanced maize plants' absorption of Cu, Mn, Ni, Na, Cr, Fe, Ca, Mg, and K significantly. Results of the findings concluded that 100 mg/kg of Zn and Ni were toxic to maize growth, but seed inoculation with A. tereus helped the plants significantly in reducing zinc and nickel stress. The A. tereus strain may be employed as a potential strain for the detoxification of heavy metals.

2.
Environ Res ; 217: 114845, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36423665

RESUMEN

Heavy metals (HMs) contamination of agricultural soils is an emerging food safety challenge at world level. Therefore, as a possible treatment for the remediation of a HMs contaminated soil (sewage water irrigation for 20-years), the impact of biochar (BC) was investigated on the uptake of HMs by wheat (Triticum aestivum L.) plants. The BC was produced from seven different feedstocks (cotton stalks (CSBC), rice straw (RSBC), poultry manure (PMBC), lawn grass (LGBC), vegetable peels (VPBC), maize straw (MSBC), and rice husks (RHBC)). Each BC was applied at 1.25% (dry weight basis, w/w) in contaminated soil and a control was maintained without BC addition and wheat was grown in potted soil and harvested at maturity. Results revealed that the properties of different biochars regulated their effects on soil nutrient and HMs mobility and uptake by plants. The maximum plant phosphorous and potassium uptake and translocation to grain (173.4% and 341%, respectively) was found in RSBC treatment over control. The RHBC, PMBC, and MSBC treatments showed a maximum decrease in grain Cd concentration (32.9%, 33.8%, and 34.1%, respectively) compared to the control. The grain Pb (-41% to -51%, with no significant differences among different treatments) and Ni (-63%) concentrations were also reduced significantly following BC treatments compared to control. The daily intake and health risk index of Cd were significantly decreased due to PMBC (-28.1% and -33.8%, respectively), and MSBC (-28.3% and -34.1%, respectively) treatment over control. The BC treatments significantly increased the translocation factor of Cd in the order of VPBC (52.1%) > LGBC (25.4%) > CSBC (13.6%) > RSBC (12.1%) compared to control. The study demonstrated that the effects of BC on metal uptake in plants varied with feedstocks and suitable BC can be further exploited for the rehabilitation of contaminated soils and thereby ensuring food safety.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Suelo , Cadmio/análisis , Triticum , Disponibilidad Biológica , Contaminantes del Suelo/análisis , Grano Comestible/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA