Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
2.
Nat Commun ; 15(1): 5366, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926387

RESUMEN

Adenosine-to-inosine (A-to-I) editing is a prevalent post-transcriptional RNA modification within the brain. Yet, most research has relied on postmortem samples, assuming it is an accurate representation of RNA biology in the living brain. We challenge this assumption by comparing A-to-I editing between postmortem and living prefrontal cortical tissues. Major differences were found, with over 70,000 A-to-I sites showing higher editing levels in postmortem tissues. Increased A-to-I editing in postmortem tissues is linked to higher ADAR and ADARB1 expression, is more pronounced in non-neuronal cells, and indicative of postmortem activation of inflammation and hypoxia. Higher A-to-I editing in living tissues marks sites that are evolutionarily preserved, synaptic, developmentally timed, and disrupted in neurological conditions. Common genetic variants were also found to differentially affect A-to-I editing levels in living versus postmortem tissues. Collectively, these discoveries offer more nuanced and accurate insights into the regulatory mechanisms of RNA editing in the human brain.


Asunto(s)
Adenosina Desaminasa , Adenosina , Autopsia , Encéfalo , Inosina , Edición de ARN , Proteínas de Unión al ARN , Humanos , Adenosina/metabolismo , Adenosina Desaminasa/metabolismo , Adenosina Desaminasa/genética , Encéfalo/metabolismo , Inosina/metabolismo , Inosina/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Corteza Prefrontal/metabolismo , Cambios Post Mortem , Masculino
3.
medRxiv ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38765961

RESUMEN

Adenosine-to-inosine (A-to-I) editing is a prevalent post-transcriptional RNA modification within the brain. Yet, most research has relied on postmortem samples, assuming it is an accurate representation of RNA biology in the living brain. We challenge this assumption by comparing A-to-I editing between postmortem and living prefrontal cortical tissues. Major differences were found, with over 70,000 A-to-I sites showing higher editing levels in postmortem tissues. Increased A-to-I editing in postmortem tissues is linked to higher ADAR1 and ADARB1 expression, is more pronounced in non-neuronal cells, and indicative of postmortem activation of inflammation and hypoxia. Higher A-to-I editing in living tissues marks sites that are evolutionarily preserved, synaptic, developmentally timed, and disrupted in neurological conditions. Common genetic variants were also found to differentially affect A-to-I editing levels in living versus postmortem tissues. Collectively, these discoveries illuminate the nuanced functions and intricate regulatory mechanisms of RNA editing within the human brain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA