Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 22105, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36543813

RESUMEN

A comprehensive body of scientific evidence indicates that rhizobial bacteria and melatonin enhance salt tolerance of crop plants. The overall goal of this research was to evaluate the ability of Rhizobium leguminoserum bv phaseoli to suppress salinity stress impacts in common bean treated with melatonin. Treatments included bacterial inoculations (inoculated (RI) and non-inoculated (NI)), different salinity levels (non-saline (NS), 4 (S1) and 8 (S2) dS m-1 of NaCl) and priming (dry (PD), melatonin (PM100) and hydro (PH) priming) with six replications in growing media containing sterile sand and perlite (1:1). The results showed that the bacterial strain had the ability to produce indole acetic acid (IAA), ACC deaminase and siderophore. Plants exposed to salinity stress indicated a significant decline in growth, yield, yield components, nitrogen fixation and selective transport (ST), while showed a significant increase in sodium uptake. However, the combination of PM100 and RI treatments by improving growth, photosynthesis rate and nitrogen fixation positively influenced plant performance in saline conditions. The combined treatment declined the negative impacts of salinity by improving the potassium translocation, potassium to sodium ratio in the shoot and root and ST. In conclusion, the combination of melatonin and ACC deaminase producing rhizobium mitigated the negative effects of salinity. This result is attributed to the increased ST and decreased sodium uptake, which significantly reduced the accumulation of sodium ions in shoot.


Asunto(s)
Melatonina , Phaseolus , Rhizobium , Tolerancia a la Sal , Melatonina/farmacología , Homeostasis , Sodio , Potasio , Salinidad
2.
Sci Rep ; 12(1): 12842, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35896783

RESUMEN

Drought stress is among the major threats that affect negatively crop productivity in arid and semi-arid regions. Probably, application of some additives such as biochar and/or brassinosteroids could mitigate this stress; however, the mechanism beyond the interaction of these two applications is not well inspected. Accordingly, a greenhouse experiment was conducted on wheat (a strategic crop) grown under deficit irrigation levels (factor A) i.e., 35% of the water holding capacity (WHC) versus 75% of WHC for 35 days while considering the following additives, i.e., (1) biochar [BC, factor B, 0, 2%] and (2) the foliar application of 24-epibrassinolide [BR, factor C, 0 (control treatment, C), 1 (BR1) or 3 (BR2) µmol)]. All treatments were replicated trice and the obtained results were statistically analyzed via the analyses of variance. Also, heat-map conceits between measured variables were calculated using the Python software. Key results indicate that drought stress led to significant reductions in all studied vegetative growth parameters (root and shoot biomasses) and photosynthetic pigments (chlorophyll a, b and total contents) while raised the levels of oxidative stress indicators. However, with the application of BC and/or BR, significance increases occurred in the growth attributes of wheat plants, its photosynthetic pigments, especially the combined additions. They also upraised the levels of enzymatic and non-enzymatic antioxidants while decreased stress indicators. Furthermore, they increased calcium (Ca), phosphorus (P) and potassium (K) content within plants. It can therefore be deduced that the integral application of BR and BC is essential to mitigate drought stress in plants.


Asunto(s)
Sequías , Triticum , Brasinoesteroides/farmacología , Carbón Orgánico , Clorofila A , Plantas , Agua/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA