Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5065, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871728

RESUMEN

Excitons, pairs of electrons and holes, undergo a Bose-Einstein condensation at low temperatures. An important platform to study excitons is double-layer two-dimensional electron gases, with two parallel planes of electrons and holes separated by a thin insulating layer. Lowering this separation (d) strengthens the exciton binding energy, however, leads to the undesired interlayer tunneling, resulting in annihilation of excitons. Here, we report the observation of a sequences of robust exciton condensates (ECs) in double bilayer graphene twisted to ~ 10° with no insulating mid-layer. The large momentum mismatch between two graphene layers suppresses interlayer tunneling, reaching a d ~ 0.334 nm. Measuring the bulk and edge transport, we find incompressible states corresponding to ECs when both layers are in half-filled N = 0, 1 Landau levels (LLs). Theoretical calculations suggest that the low-energy charged excitation of ECs can be meron-antimeron or particle-hole pair, which relies on both LL index and carrier type. Our results establish a novel platform with extreme coupling strength for studying quantum bosonic phase.

2.
Sensors (Basel) ; 24(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38257513

RESUMEN

Aspect-based sentiment analysis is a fine-grained task where the key goal is to predict sentiment polarities of one or more aspects in a given sentence. Currently, graph neural network models built upon dependency trees are widely employed for aspect-based sentiment analysis tasks. However, most existing models still contain a large amount of noisy nodes that cannot precisely capture the contextual relationships between specific aspects. Meanwhile, most studies do not consider the connections between nodes without direct dependency edges but play critical roles in determining the sentiment polarity of an aspect. To address the aforementioned limitations, we propose a Structured Dependency Tree-based Graph Convolutional Network (SDTGCN) model. Specifically, we explore construction of a structured syntactic dependency graph by incorporating positional information, sentiment commonsense knowledge, part-of-speech tags, syntactic dependency distances, etc., to assign arbitrary edge weights between nodes. This enhances the connections between aspect nodes and pivotal words while weakening irrelevant node links, enabling the model to sufficiently express sentiment dependencies between specific aspects and contextual information. We utilize part-of-speech tags and dependency distances to discover relationships between pivotal nodes without direct dependencies. Finally, we aggregate node information by fully considering their importance to obtain precise aspect representations. Experimental results on five publicly available datasets demonstrate the superiority of our proposed model over state-of-the-art approaches; furthermore, the accuracy and F1-score show a significant improvement on the majority of datasets, with increases of 0.74, 0.37, 0.65, and 0.79, 0.75, 1.17, respectively. This series of enhancements highlights the effective progress made by the STDGCN model in enhancing sentiment classification performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA