RESUMEN
The creation of uniformly molecular-sized through-pores within polymeric membranes and the direct evidence of these pores are essential for fundamentally understanding the transport mechanism and improving separation efficiency. Herein, we report an electric-field-assisted interface synthesis approach to fabricating large-area covalent organic framework (COF) membranes that consist of preferentially oriented single-crystalline COF domains. These single-crystalline frameworks were translated into high-density, vertically aligned through-pores across the entire membrane, enabling the direct visualization of membrane pores with an ultrahigh resolution of 2 Å using the low-dose high-resolution transmission electron microscopy technique (HRTEM). The density of directly visualized through-pores was quantified to be 1.2 × 1017 m-2, approaching theoretical predictions. These COF membranes demonstrate ultrahigh solvent permeability, which is 10 times higher than that of state-of-the-art organic solvent nanofiltration membranes. When applied to high-value pharmaceutical separations, their COF membranes exhibit 2 orders of magnitude higher methanol permeance and 20-fold greater enrichment efficiency than their commercial counterparts.
RESUMEN
Photocatalytic covalent organic frameworks (COFs) are typically constructed with rigid aromatic linkers for crystallinity and extended π-conjugation. However, the essential hydrophobicity of the aromatic backbone can limit their performances in water-based photocatalytic reactions. Here, we for the first time report the synthesis of hydrophilic COFs with aliphatic linkers [tartaric acid dihydrazide (TAH) and butanedioic acid dihydrazide] that can function as efficient photocatalysts for H2O2 and H2 evolution. In these hydrophilic aliphatic linkers, the specific multiple hydrogen bonding networks not only enhance crystallization but also ensure an ideal compatibility of crystallinity, hydrophilicity, and light harvesting. The resulting aliphatic linker COFs adopt an unusual ABC stacking, giving rise to approximately 0.6 nm nanopores with an improved interaction with water guests. Remarkably, both aliphatic linker-based COFs show strong visible light absorption, along with a narrow optical band gap of â¼1.9 eV. The H2O2 evolution rate for TAH-COF reaches up to 6003 µmol h-1 g-1, in the absence of sacrificial agents, surpassing the performance of all previously reported COF-based photocatalysts. Theoretical calculations reveal that the TAH linker can enhance the indirect two-electron oxygen reduction reaction for H2O2 production by improving the O2 adsorption and stabilizing the *OOH intermediate. This study opens a new avenue for constructing semiconducting COFs using nonaromatic linkers.
RESUMEN
Creating structural defects in a controlled manner within metal-organic frameworks (MOFs) poses a significant challenge for synthesis, and concurrently, identifying the types and distributions of these defects is also a formidable task for characterization. In this study, we demonstrate that by employing 2-sulfonylterephthalic acid as the ligand for synthesizing Zr (or Hf)-based MOFs, a crystal phase transformation from the common fcu topology to the rare jmt topology can be easily facilitated using a straightforward mixed-solvent strategy. The jmt phase, characterized by an extensively open framework, can be considered a derivative of the fcu phase, generated through the introduction of missing-cluster defects. We have explicitly identified both MOF phases, their intermediate states, and the novel core-shell structures they form using ultralow-dose high-resolution transmission electron microscopy. In addition to facilitating phase engineering, the incorporation of sulfonic groups in MOFs imparts ionic selectivity, making them applicable for osmotic energy harvesting through mixed matrix membrane fabrication. The membrane containing the jmt-phase MOF exhibits an exceptionally high peak power density of 10.08 W m-2 under a 50-fold salinity gradient (NaCl: 0.5 M|0.01 M), which surpasses the threshold of 5 W m-2 for commercial applications and can be attributed to the combination of large pore size, extensive porosity, and abundant sulfonic groups in this novel MOF material.
RESUMEN
Covalent organic frameworks (COFs) are an ideal template to construct high-efficiency catalysts for oxygen reduction reaction (ORR) due to their predictable properties. However, the closely parallel-stacking manner and lacking intramolecular electron transfer ability of COFs limit atomic utilization efficiency and intrinsic activity. Herein, COFs are constructed with large interlayer distances and enhanced electronic transfer ability by side-chain functionalization. Long chains with electron-donating features not only enlarge interlayer distance, but also narrow the bandgap. The resulting DPPS-COF displays higher electrochemical surface areas to provide more exposed active sites, despite <1/10 surface areas. DPPS-COF exhibits excellent electrocatalytic ORR activity with half-wave potential of 0.85 V, which is 30 and 60 mV positive than those of Pt/C and DPP-COF, and is the record among the reported COFs. DPPS-COF is employed as cathode electrocatalyst for zinc-air battery with a maximum power density of 185.2 mW cm-2, which is superior to Pt/C. Theoretical calculation further reveals that longer electronic-donating chains not only facilitate the formation of intermediate OOH* from O2, but also promote intermediates desorption , and thus leading to higher activity.
RESUMEN
In-plane ionic conduction over two-dimensional (2D) materials is desirable for flexible electronics. Exfoliating 2D covalent organic frameworks (COFs) towards a few layers is highly anticipated, whereas most examples remain robust via π-stacking against the interlayered dislocation. Herein, we synthesize a phosphine-amine-linked 2D COF by a nucleophilic substitution reaction of phosphazene with amines. The synthesized COF is crystalline, and stacks in an AB-staggered fashion, wherein the AB dual layers are interlocked by embedding P-Cl bonds from one to another layer, and the non-interlocked layers are readily delaminated. Therefore, in situ post-quaternization over phosphazene can improve the ionization of backbones, accompanied by layered exfoliation. The ultrathin nanosheets can decouple lithium salts for fast solid-state ion transport, achieving a high conductivity and low activation energy. Our findings explore the P-N substitution reaction for COF crystallization and demonstrate that the staggered stacking 2D COFs are readily exfoliated for designing solid electrolytes.
RESUMEN
Two-dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the efficiency of atom utilization is still in need of improvement, because the catalytic centers are located in the basal layers and it is difficult for the electrolytes to access them. Herein, we demonstrate the use of 1D COFs for the 2e- oxygen reduction reaction (ORR). The use of different four-connectivity blocks resulted in the prepared 1D COFs displaying good crystallinity, high surface areas, and excellent chemical stability. The more exposed catalytic sites resulted in the 1D COFs showing large electrochemically active surface areas, 4.8-fold of that of a control 2D COF, and thus enabled catalysis of the ORR with a higher H2 O2 selectivity of 85.8 % and activity, with a TOF value of 0.051â s-1 at 0.2â V, than a 2D COF (72.9 % and 0.032â s-1 ). This work paves the way for the development of COFs with low dimensions for electrocatalysis.
RESUMEN
Covalent organic frameworks (COFs) are distinguished from other organic polymers by their crystallinity1-3, but it remains challenging to obtain robust, highly crystalline COFs because the framework-forming reactions are poorly reversible4,5. More reversible chemistry can improve crystallinity6-9, but this typically yields COFs with poor physicochemical stability and limited application scope5. Here we report a general and scalable protocol to prepare robust, highly crystalline imine COFs, based on an unexpected framework reconstruction. In contrast to standard approaches in which monomers are initially randomly aligned, our method involves the pre-organization of monomers using a reversible and removable covalent tether, followed by confined polymerization. This reconstruction route produces reconstructed COFs with greatly enhanced crystallinity and much higher porosity by means of a simple vacuum-free synthetic procedure. The increased crystallinity in the reconstructed COFs improves charge carrier transport, leading to sacrificial photocatalytic hydrogen evolution rates of up to 27.98 mmol h-1 g-1. This nanoconfinement-assisted reconstruction strategy is a step towards programming function in organic materials through atomistic structural control.
RESUMEN
Lithium-sulfur (Li-S) batteries are held great promise for next-generation high-energy-density devices; however, polysulfide shuttle and Li-dendrite growth severely hinders their commercial production. Herein, a sulfonate-rich COF (SCOF-2) is designed, synthesized, and used to modify the separator of Li-S batteries, providing a solution for the above challenges. It is found that the SCOF-2 features stronger electronegativity and larger interlayer spacing than that of none/monosulfonate COFs, which can facilitate the Li+ migration and alleviate the formation of Li-dendrites. Density functional theory (DFT) calculations and in situ Raman analysis demonstrate that the SCOF-2 possesses a narrow bandgap and strong interaction on sulfur species, thereby suppressing self-discharge behavior. As a result, the modified batteries deliver an ultralow attenuation rate of 0.047% per cycle over 800 cycles at 1 C, and excellent anti-self-discharge performance by a low-capacity attenuation of 6.0% over one week. Additionally, even with the high-sulfur-loading cathode (3.2-8.2 mgs cm-2 ) and lean electrolyte (5 µL mgs -1 ), the batteries still exhibit ≈80% capacity retention over 100 cycles, showing great potential for practical application.
RESUMEN
Crown ethers are a class of macrocyclic molecules with unique flexible structures but they are rarely integrated in covalent organic frameworks (COFs). To date, employing flexible organic units such as crown ethers to construct COFs with high crystallinity and surface area are still a challenge. In this work, two new COFs with different flexible crown ethers as backbone rather than side chains are synthesized and further employed for alkali metal ions separation. Both of COFs possess high surface areas, good crystallinity, and excellent chemical stability. Interestingly, these two new COFs with 18-crown-6 or 24-crown-8 units showed remarkable binding ability of K+ or Cs+ owing to the size-fit effect. This work demonstrated that the unique structural features of crown ethers will lead to increase interest in fabricating COFs with crown ethers.
RESUMEN
We describe the design and synthesis of two new functionalized covalent organic frameworks, named Cz-COF and Tz-COF, by using monomers containing carbazole and benzobisthiazole as building blocks. The resultant materials possess high crystallinity, permanent porosities as well as abundant heteroatom activated sites in the framework. As solid adsorbents, both COFs exhibit excellent CO2 uptake (11.0 wt% for Cz-COF and 15.4 wt% for Tz-COF), high adsorption selectivity for CO2 over N2 and good recyclability.
RESUMEN
A porous triazine and carbazole bifunctionalized task-specific polymer has been synthesized via a facile Friedel-Crafts reaction. The resultant porous framework exhibits excellent CO2 uptake (18.0 wt%, 273 K and 1 bar) and good adsorption selectivity for CO2 over N2.