Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
bioRxiv ; 2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39345458

RESUMEN

Phenotypic data are critical for understanding biological mechanisms and consequences of genomic variation, and are pivotal for clinical use cases such as disease diagnostics and treatment development. For over a century, vast quantities of phenotype data have been collected in many different contexts covering a variety of organisms. The emerging field of phenomics focuses on integrating and interpreting these data to inform biological hypotheses. A major impediment in phenomics is the wide range of distinct and disconnected approaches to recording the observable characteristics of an organism. Phenotype data are collected and curated using free text, single terms or combinations of terms, using multiple vocabularies, terminologies, or ontologies. Integrating these heterogeneous and often siloed data enables the application of biological knowledge both within and across species. Existing integration efforts are typically limited to mappings between pairs of terminologies; a generic knowledge representation that captures the full range of cross-species phenomics data is much needed. We have developed the Unified Phenotype Ontology (uPheno) framework, a community effort to provide an integration layer over domain-specific phenotype ontologies, as a single, unified, logical representation. uPheno comprises (1) a system for consistent computational definition of phenotype terms using ontology design patterns, maintained as a community library; (2) a hierarchical vocabulary of species-neutral phenotype terms under which their species-specific counterparts are grouped; and (3) mapping tables between species-specific ontologies. This harmonized representation supports use cases such as cross-species integration of genotype-phenotype associations from different organisms and cross-species informed variant prioritization.

2.
Nucleic Acids Res ; 52(D1): D1333-D1346, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37953324

RESUMEN

The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs.


Asunto(s)
Ontologías Biológicas , Humanos , Fenotipo , Genómica , Algoritmos , Enfermedades Raras
3.
Trends Genet ; 18(10): 499, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12350347

RESUMEN

Genetically engineered strains of mice, modified by gene targeting (knockouts), are increasingly being employed as alternative effective research tools in elucidating the genetic basis of human deafness. An impressive array of auditory and vestibular mouse knockouts is already available as a valuable resource for studying the ontogenesis, morphogenesis and function of the mammalian inner ear. This article provides a current catalog of mouse knockouts with inner ear morphogenetic malformations and hearing or balance deficits resulting from ablation of genes that are regionally expressed in the inner ear and/or within surrounding tissues, such as the hindbrain, neural crest and mesenchyme.


Asunto(s)
Oído Interno/anomalías , Ratones Noqueados/anomalías , Animales , Sordera/genética , Humanos , Ratones , Ratones Noqueados/genética
4.
Trends Genet ; 18(1): 8-10, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11750688

RESUMEN

An increasing number of genetically engineered animals are produced worldwide for use in both basic and applied research. Here, I provide an update of some of the latest mouse knockouts in The Jackson Laboratory Transgenic/Targeted Mutation Database (TBASE), concentrating on those associated with male infertility and neuropathology.


Asunto(s)
Infertilidad Masculina/genética , Animales , Modelos Animales de Enfermedad , Femenino , Ingeniería Genética , Humanos , Infertilidad Masculina/patología , Masculino , Ratones , Ratones Noqueados , Síndrome de Rett/genética , Síndrome de Rett/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA