Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nat Commun ; 15(1): 6264, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048565

RESUMEN

Opioid withdrawal is a liability of chronic opioid use and misuse, impacting people who use prescription or illicit opioids. Hyperactive autonomic output underlies many of the aversive withdrawal symptoms that make it difficult to discontinue chronic opioid use. The locus coeruleus (LC) is an important autonomic centre within the brain with a poorly defined role in opioid withdrawal. We show here that pannexin-1 (Panx1) channels expressed on microglia critically modulate LC activity during opioid withdrawal. Within the LC, we found that spinally projecting tyrosine hydroxylase (TH)-positive neurons (LCspinal) are hyperexcitable during morphine withdrawal, elevating cerebrospinal fluid (CSF) levels of norepinephrine. Pharmacological and chemogenetic silencing of LCspinal neurons or genetic ablation of Panx1 in microglia blunted CSF NE release, reduced LC neuron hyperexcitability, and concomitantly decreased opioid withdrawal behaviours in mice. Using probenecid as an initial lead compound, we designed a compound (EG-2184) with greater potency in blocking Panx1. Treatment with EG-2184 significantly reduced both the physical signs and conditioned place aversion caused by opioid withdrawal in mice, as well as suppressed cue-induced reinstatement of opioid seeking in rats. Together, these findings demonstrate that microglial Panx1 channels modulate LC noradrenergic circuitry during opioid withdrawal and reinstatement. Blocking Panx1 to dampen LC hyperexcitability may therefore provide a therapeutic strategy for alleviating the physical and aversive components of opioid withdrawal.


Asunto(s)
Conexinas , Locus Coeruleus , Proteínas del Tejido Nervioso , Probenecid , Médula Espinal , Síndrome de Abstinencia a Sustancias , Animales , Locus Coeruleus/metabolismo , Locus Coeruleus/efectos de los fármacos , Conexinas/metabolismo , Conexinas/genética , Conexinas/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Síndrome de Abstinencia a Sustancias/metabolismo , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Ratones , Masculino , Ratas , Médula Espinal/metabolismo , Médula Espinal/efectos de los fármacos , Probenecid/farmacología , Morfina/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Analgésicos Opioides/farmacología , Norepinefrina/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Ratones Endogámicos C57BL , Ratas Sprague-Dawley , Tirosina 3-Monooxigenasa/metabolismo , Ratones Noqueados
2.
Sci Signal ; 15(720): eabn2081, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35133865

RESUMEN

Large-pore channels such as pannexin-1 (PANX1) typically lack pore-lining constriction points, leaving only speculations on how these channels functionally "close." In this issue of Science Signaling, Kuzuya et al. found that rearrangements in the PANX1 amino-terminal helix mediate channel gating by a surprising mechanism in which lipids block the ion conduction pathway, creating a hydrophobic gate.


Asunto(s)
Lípidos , Transducción de Señal , Interacciones Hidrofóbicas e Hidrofílicas
3.
J Physiol ; 598(2): 361-379, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31698505

RESUMEN

KEY POINTS: The large-pore channel pannexin 1 (Panx1) is expressed in many cell types and can open upon different, yet not fully established, stimuli. Panx1 permeability is often inferred from channel permeability to fluorescent dyes, but it is currently unknown whether dye permeability translates to permeability to other molecules. Cell shrinkage and C-terminal cleavage led to a Panx1 open-state with increased permeability to atomic ions (current), but did not alter ethidium uptake. Panx1 inhibitors affected Panx1-mediated ion conduction differently from ethidium permeability, and inhibitor efficiency towards a given molecule therefore cannot be extrapolated to its effects on the permeability of another. We conclude that ethidium permeability does not reflect equal permeation of other molecules and thus is no measure of general Panx1 activity. ABSTRACT: Pannexin 1 (Panx1) is a large-pore membrane channel connecting the extracellular milieu with the cell interior. While several activation regimes activate Panx1 in a variety of cell types, the selective permeability of an open Panx1 channel remains unresolved: does a given activation paradigm increase Panx1's permeability towards all permeants equally and does fluorescent dye flux serve as a proxy for biological permeation through an open channel? To explore permeant-selectivity of Panx1 activation and inhibition, we employed Panx1-expressing Xenopus laevis oocytes and HEK293T cells. We report that different mechanisms of activation of Panx1 differentially affected ethidium and atomic ion permeation. Most notably, C-terminal truncation or cell shrinkage elevated Panx1-mediated ion conductance, but had no effect on ethidium permeability. In contrast, extracellular pH changes predominantly affected ethidium permeability but not ionic conductance. High [K+ ]o did not increase the flux of either of the two permeants. Once open, Panx1 demonstrated preference for anionic permeants, such as Cl- , lactate and glutamate, while not supporting osmotic water flow. Panx1 inhibitors displayed enhanced potency towards Panx1-mediated currents compared to that of ethidium uptake. We conclude that activation or inhibition of Panx1 display permeant-selectivity and that permeation of ethidium does not necessarily reflect an equal permeation of smaller biological molecules and atomic ions.


Asunto(s)
Conexinas/fisiología , Canales Iónicos/fisiología , Proteínas del Tejido Nervioso/fisiología , Animales , Colorantes Fluorescentes , Ácido Glutámico , Células HEK293 , Humanos , Ácido Láctico , Oocitos , Xenopus laevis
4.
Neurosci Lett ; 695: 65-70, 2019 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28911820

RESUMEN

Pannexins form single membrane channels that regulate the passage of ions, small molecules and metabolites between the intra- and extracellular compartments. In the central nervous system, these channels are integrated into numerous signaling cascades that shape brain physiology and pathology. Post-translational modification of pannexins is complex, with phosphorylation emerging as a prominent form of functional regulation. While much is still not known regarding the specific kinases and modified amino acids, recent reports support a role for Src family tyrosine kinases (SFK) in regulating pannexin channel activity. This review outlines the current evidence supporting SFK-dependent pannexin phosphorylation in the CNS and examines the importance of these modifications in the healthy and diseased brain.


Asunto(s)
Sistema Nervioso Central/metabolismo , Conexinas/metabolismo , Familia-src Quinasas/metabolismo , Animales , Sistema Nervioso Central/enzimología , Humanos , Fosforilación , Procesamiento Proteico-Postraduccional , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA