Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 14453, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34262064

RESUMEN

Alloys of Mn55Al45C2 with additions of VC nano-particles have been synthesized and their properties evaluated. The Mn55Al45C2(VC)x (x = 0.25, 0.5 and 1) alloys have been prepared by induction melting resulting in a high content of the ferromagnetic τ-phase (> 94 wt.%). Powder X-ray diffraction indicates that nano-VC can be dissolved in the alloy matrix up to 1 at.%. On the other side, metallography investigations by scanning electron microscopy and scanning transmission electron microscope show inclusions of the nanosized additives in the microstructure. The effect of nano-VC on the grain and twin boundaries has been studied by electron backscattering diffraction. The magnetization has been measured by magnetometry up to 9 T while the domain structure has been studied using both magnetic force microscopy as well as Kerr-microscopy. For nano-VC contents above 0.25 at.%, a clear increase of the coercive force is observed, from 57 to 71 kA/m. The optimum appears to be for 0.5 at.% nano-VC which shows a 25% increase in coercive force without losing any saturation magnetization. This independent increase in coercivity is believed to originate from the nano-VC reducing the overall magnetic domain size. Overall, we observe that addition of nano-VC could be an interesting route to increase the coercive force of MnAl, without sacrificing saturation magnetization.

2.
J Phys Condens Matter ; 28(40): 406002, 2016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27518923

RESUMEN

In the search for new rare earth free permanent magnetic materials, FeNi with a L10 structure is a possible candidate. We have synthesized the phase in the thin film form by sputtering onto HF-etched Si(0 0 1) substrates. Monatomic layers of Fe and Ni were alternately deposited on a Cu buffer layer, all of which grew epitaxially on the Si substrates. A good crystal structure and epitaxial relationship was confirmed by in-house x-ray diffraction (XRD). The chemical order, which to some part is the origin of an uniaxial magnetic anisotropy, was measured by resonant XRD. The 0 0 1 superlattice reflection was split in two symmetrically spaced peaks due to a composition modulation of the Fe and Ni layers. Furthermore the influence of roughness induced chemical anti-phase domains on the RXRD pattern is exemplified. A smaller than expected magnetic uniaxial anisotropy energy was obtained, which is partly due to the composition modulations, but the major reason is concluded to be the Cu buffer surface roughness.

3.
J Phys Condens Matter ; 25(41): 416004, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24047961

RESUMEN

The thickness dependence of magnetic properties has been studied in SmCo5 amorphous films with imprinted in-plane anisotropy for thicknesses ranging down to the nanometer scale (2.5-100 nm). The field induced in-plane magnetic anisotropy decreases considerably when the film thickness is below 20 nm. Analysis of the magnetic anisotropy energy shows that the decrease of the induced in-plane anisotropy is accompanied by the development of an out-of-plane interface anisotropy. Two different regimes for the coercivity (Hc) change are found: below 3.75 nm, the Hc decreases continuously with decrease of the film thickness, whereas at above 3.75 nm, the Hc decreases with increase of the film thickness. This change in Hc can be understood by considering the decrease of the short range chemical order for the thinnest films (<3.75 nm) and the relative decrease of the interface contribution with increasing film thickness. The changes in anisotropy have a profound influence on the domain structure, in which the angle of the zigzag domain boundaries decreases with the inverse thickness of the layers.


Asunto(s)
Cobalto/química , Campos Magnéticos , Membranas Artificiales , Modelos Químicos , Modelos Moleculares , Nanopartículas/química , Nanopartículas/ultraestructura , Samario/química , Simulación por Computador , Ensayo de Materiales
4.
Phys Rev Lett ; 96(3): 037205, 2006 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-16486763

RESUMEN

We report on the experimental realization of tetragonal Fe-Co alloys as a constituent of Fe0.36Co0.64/Pt superlattices with huge perpendicular magnetocrystalline anisotropy energy, reaching 210 microeV/atom, and a saturation magnetization of 2.5 microB/atom at 40 K, in qualitative agreement with theoretical predictions. At room temperature the corresponding values and are achieved. This suggests that Fe-Co alloys with carefully chosen combinations of composition and distortion are good candidates for high-density perpendicular storage materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA